Deep Learning for Abstract Argumentation Semantics
- URL: http://arxiv.org/abs/2007.07629v2
- Date: Thu, 16 Jul 2020 09:48:06 GMT
- Title: Deep Learning for Abstract Argumentation Semantics
- Authors: Dennis Craandijk and Floris Bex
- Abstract summary: We present a learning-based approach to determining acceptance of arguments under several abstract argumentation semantics.
We propose an argumentation graph neural network (AGNN) that learns a message-passing algorithm to predict the likelihood of an argument being accepted.
- Score: 3.759936323189418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a learning-based approach to determining acceptance
of arguments under several abstract argumentation semantics. More specifically,
we propose an argumentation graph neural network (AGNN) that learns a
message-passing algorithm to predict the likelihood of an argument being
accepted. The experimental results demonstrate that the AGNN can almost
perfectly predict the acceptability under different semantics and scales well
for larger argumentation frameworks. Furthermore, analysing the behaviour of
the message-passing algorithm shows that the AGNN learns to adhere to basic
principles of argument semantics as identified in the literature, and can thus
be trained to predict extensions under the different semantics - we show how
the latter can be done for multi-extension semantics by using AGNNs to guide a
basic search. We publish our code at
https://github.com/DennisCraandijk/DL-Abstract-Argumentation
Related papers
- Disentangling Dense Embeddings with Sparse Autoencoders [0.0]
Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks.
We present one of the first applications of SAEs to dense text embeddings from large language models.
We show that the resulting sparse representations maintain semantic fidelity while offering interpretability.
arXiv Detail & Related papers (2024-08-01T15:46:22Z) - DMON: A Simple yet Effective Approach for Argument Structure Learning [33.96187185638286]
Argument structure learning (ASL) entails predicting relations between arguments.
Despite its broad utilization, ASL remains a challenging task because it involves examining the complex relationships between the sentences in a potentially unstructured discourse.
We have developed a simple yet effective approach called Dual-tower Multi-scale cOnvolution neural Network(DMON) for the ASL task.
arXiv Detail & Related papers (2024-05-02T11:56:16Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Ranking-based Argumentation Semantics Applied to Logical Argumentation
(full version) [2.9005223064604078]
We investigate the behaviour of ranking-based semantics for structured argumentation.
We show that a wide class of ranking-based semantics gives rise to so-called culpability measures.
arXiv Detail & Related papers (2023-07-31T15:44:33Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
We propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning.
The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
arXiv Detail & Related papers (2022-12-14T22:10:46Z) - Fine-Grained Visual Entailment [51.66881737644983]
We propose an extension of this task, where the goal is to predict the logical relationship of fine-grained knowledge elements within a piece of text to an image.
Unlike prior work, our method is inherently explainable and makes logical predictions at different levels of granularity.
We evaluate our method on a new dataset of manually annotated knowledge elements and show that our method achieves 68.18% accuracy at this challenging task.
arXiv Detail & Related papers (2022-03-29T16:09:38Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Great Service! Fine-grained Parsing of Implicit Arguments [7.785534704637891]
We show that certain types of implicit arguments are more difficult to parse than others.
This work will facilitate a better understanding of implicit and underspecified language, by incorporating it holistically into meaning representations.
arXiv Detail & Related papers (2021-06-04T15:50:35Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.