Quantum Computation of Fluid Dynamics
- URL: http://arxiv.org/abs/2007.09147v1
- Date: Fri, 17 Jul 2020 13:10:54 GMT
- Title: Quantum Computation of Fluid Dynamics
- Authors: Sachin S. Bharadwaj and Katepalli R. Sreenivasan
- Abstract summary: Studies of strongly nonlinear dynamical systems such as turbulent flows call for superior computational prowess.
We will distill a few key tools and algorithms from the huge spectrum of methods available, and evaluate possible approaches of quantum computing in fluid dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studies of strongly nonlinear dynamical systems such as turbulent flows call
for superior computational prowess. With the advent of quantum computing, a
plethora of quantum algorithms have demonstrated, both theoretically and
experimentally, more powerful computational possibilities than their classical
counterparts. Starting with a brief introduction to quantum computing, we will
distill a few key tools and algorithms from the huge spectrum of methods
available, and evaluate possible approaches of quantum computing in fluid
dynamics.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Extending the reach of quantum computing for materials science with
machine learning potentials [0.3352108528371308]
We propose a strategy to extend the scope of quantum computational methods to large scale simulations using a machine learning potential.
We investigate the trainability of a machine learning potential selecting various sources of noise.
We construct the first machine learning potential from data computed on actual IBM Quantum processors for a hydrogen molecule.
arXiv Detail & Related papers (2022-03-14T15:59:30Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Non-adiabatic molecular quantum dynamics with quantum computers [0.0]
We propose a quantum algorithm for the simulation of fast non-adiabatic chemical processes.
In particular, we introduce a first-quantization method for the potential time evolution of a wavepacket on two harmonic energy surfaces.
arXiv Detail & Related papers (2020-06-16T18:00:22Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.