DWMD: Dimensional Weighted Orderwise Moment Discrepancy for
Domain-specific Hidden Representation Matching
- URL: http://arxiv.org/abs/2007.09312v1
- Date: Sat, 18 Jul 2020 02:37:32 GMT
- Title: DWMD: Dimensional Weighted Orderwise Moment Discrepancy for
Domain-specific Hidden Representation Matching
- Authors: Rongzhe Wei, Fa Zhang, Bo Dong and Qinghua Zheng
- Abstract summary: Key challenge in this field is establishing a metric that can measure the data distribution discrepancy between two homogeneous domains.
We propose a novel moment-based probability distribution metric termed dimensional weighted orderwise moment discrepancy (DWMD) for feature representation matching.
Our metric function takes advantage of a series for high-order moment alignment, and we theoretically prove that our DWMD metric function is error-free.
- Score: 21.651807102769954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge transfer from a source domain to a different but semantically
related target domain has long been an important topic in the context of
unsupervised domain adaptation (UDA). A key challenge in this field is
establishing a metric that can exactly measure the data distribution
discrepancy between two homogeneous domains and adopt it in distribution
alignment, especially in the matching of feature representations in the hidden
activation space. Existing distribution matching approaches can be interpreted
as failing to either explicitly orderwise align higher-order moments or satisfy
the prerequisite of certain assumptions in practical uses. We propose a novel
moment-based probability distribution metric termed dimensional weighted
orderwise moment discrepancy (DWMD) for feature representation matching in the
UDA scenario. Our metric function takes advantage of a series for high-order
moment alignment, and we theoretically prove that our DWMD metric function is
error-free, which means that it can strictly reflect the distribution
differences between domains and is valid without any feature distribution
assumption. In addition, since the discrepancies between probability
distributions in each feature dimension are different, dimensional weighting is
considered in our function. We further calculate the error bound of the
empirical estimate of the DWMD metric in practical applications. Comprehensive
experiments on benchmark datasets illustrate that our method yields
state-of-the-art distribution metrics.
Related papers
- Domain Adaptation with Cauchy-Schwarz Divergence [39.36943882475589]
We introduce Cauchy-Schwarz divergence to the problem of unsupervised domain adaptation (UDA)
The CS divergence offers a theoretically tighter generalization error bound than the popular Kullback-Leibler divergence.
We show how the CS divergence can be conveniently used in both distance metric- or adversarial training-based UDA frameworks.
arXiv Detail & Related papers (2024-05-30T12:01:12Z) - Domain Generalization with Small Data [27.040070085669086]
We learn a domain-invariant representation based on the probabilistic framework by mapping each data point into probabilistic embeddings.
Our proposed method can marriage the measurement on the textitdistribution over distributions (i.e., the global perspective alignment) and the distribution-based contrastive semantic alignment.
arXiv Detail & Related papers (2024-02-09T02:59:08Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
This paper develops a scalable distributed probabilistic inference algorithm.
It applies to continuous variables, intractable posteriors and large-scale real-time data in sensor networks.
arXiv Detail & Related papers (2023-09-05T22:33:02Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Cycle Consistent Probability Divergences Across Different Spaces [38.43511529063335]
Discrepancy measures between probability distributions are at the core of statistical inference and machine learning.
This work proposes a novel unbalanced Monge optimal transport formulation for matching, up to isometries, distributions on different spaces.
arXiv Detail & Related papers (2021-11-22T16:35:58Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
Kernel techniques are among the most popular and flexible approaches in data science.
Mean embedding gives rise to a divergence measure referred to as maximum mean discrepancy (MMD)
In this paper we focus on the problem of MMD estimation when the mean embedding of one of the underlying distributions is available analytically.
arXiv Detail & Related papers (2021-10-15T21:29:27Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains.
We propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning.
In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain.
In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution.
arXiv Detail & Related papers (2021-10-04T13:32:57Z) - Heuristic Domain Adaptation [105.59792285047536]
Heuristic Domain Adaptation Network (HDAN) explicitly learns the domain-invariant and domain-specific representations.
Heuristic Domain Adaptation Network (HDAN) has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA.
arXiv Detail & Related papers (2020-11-30T04:21:35Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Rethink Maximum Mean Discrepancy for Domain Adaptation [77.2560592127872]
This paper theoretically proves two essential facts: 1) minimizing the Maximum Mean Discrepancy equals to maximize the source and target intra-class distances respectively but jointly minimize their variance with some implicit weights, so that the feature discriminability degrades.
Experiments on several benchmark datasets not only prove the validity of theoretical results but also demonstrate that our approach could perform better than the comparative state-of-art methods substantially.
arXiv Detail & Related papers (2020-07-01T18:25:10Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
We study few-shot supervised domain adaptation (DA) for regression problems, where only a few labeled target domain data and many labeled source domain data are available.
Many of the current DA methods base their transfer assumptions on either parametrized distribution shift or apparent distribution similarities.
We propose mechanism transfer, a meta-distributional scenario in which a data generating mechanism is invariant among domains.
arXiv Detail & Related papers (2020-02-10T02:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.