Automated Phenotyping via Cell Auto Training (CAT) on the Cell DIVE
Platform
- URL: http://arxiv.org/abs/2007.09471v1
- Date: Sat, 18 Jul 2020 16:45:32 GMT
- Title: Automated Phenotyping via Cell Auto Training (CAT) on the Cell DIVE
Platform
- Authors: Alberto Santamaria-Pang, Anup Sood, Dan Meyer, Aritra Chowdhury, Fiona
Ginty
- Abstract summary: We present a method for automatic cell classification in tissue samples using an automated training set from multiplexed immunofluorescence images.
The method utilizes multiple markers stained in situ on a single tissue section on a robust hyperplex immunofluorescence platform.
- Score: 0.5599792629509229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for automatic cell classification in tissue samples using
an automated training set from multiplexed immunofluorescence images. The
method utilizes multiple markers stained in situ on a single tissue section on
a robust hyperplex immunofluorescence platform (Cell DIVE, GE Healthcare) that
provides multi-channel images allowing analysis at single cell/sub-cellular
levels. The cell classification method consists of two steps: first, an
automated training set from every image is generated using marker-to-cell
staining information. This mimics how a pathologist would select samples from a
very large cohort at the image level. In the second step, a probability model
is inferred from the automated training set. The probabilistic model captures
staining patterns in mutually exclusive cell types and builds a single
probability model for the data cohort. We have evaluated the proposed approach
to classify: i) immune cells in cancer and ii) brain cells in neurological
degenerative diseased tissue with average accuracies above 95%.
Related papers
- Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Distribution-based Sketching of Single-Cell Samples [6.904244323294012]
We propose a novel sketching approach based on Kernel Herding that selects a limited subsample of all cells while preserving the underlying frequencies of immune cell-types.
We tested our approach on three flow and mass datasets and on one single-cell RNA sequencing dataset.
arXiv Detail & Related papers (2022-06-30T19:43:06Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types.
The model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample.
arXiv Detail & Related papers (2022-03-02T07:09:29Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embedding encodes the cellular landscape of each profiled biological sample.
We train a simple linear classifier and achieve state-of-the-art classification accuracy on 3 flow and mass datasets.
arXiv Detail & Related papers (2022-01-18T21:40:36Z) - A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting [4.164451715899639]
We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide.
We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections.
We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context.
arXiv Detail & Related papers (2021-01-27T22:40:33Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.