A Generic Visualization Approach for Convolutional Neural Networks
- URL: http://arxiv.org/abs/2007.09748v1
- Date: Sun, 19 Jul 2020 18:46:56 GMT
- Title: A Generic Visualization Approach for Convolutional Neural Networks
- Authors: Ahmed Taha, Xitong Yang, Abhinav Shrivastava, and Larry Davis
- Abstract summary: We formulate attention visualization as a constrained optimization problem.
We leverage the unit L2-Norm constraint as an attention filter (L2-CAF) to localize attention in both classification and retrieval networks.
- Score: 48.30883603606862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval networks are essential for searching and indexing. Compared to
classification networks, attention visualization for retrieval networks is
hardly studied. We formulate attention visualization as a constrained
optimization problem. We leverage the unit L2-Norm constraint as an attention
filter (L2-CAF) to localize attention in both classification and retrieval
networks. Unlike recent literature, our approach requires neither architectural
changes nor fine-tuning. Thus, a pre-trained network's performance is never
undermined
L2-CAF is quantitatively evaluated using weakly supervised object
localization. State-of-the-art results are achieved on classification networks.
For retrieval networks, significant improvement margins are achieved over a
Grad-CAM baseline. Qualitative evaluation demonstrates how the L2-CAF
visualizes attention per frame for a recurrent retrieval network. Further
ablation studies highlight the computational cost of our approach and compare
L2-CAF with other feasible alternatives. Code available at
https://bit.ly/3iDBLFv
Related papers
- A novel adversarial learning strategy for medical image classification [9.253330143870427]
auxiliary convolutional neural networks (AuxCNNs) have been employed on top of traditional classification networks to facilitate the training of intermediate layers.
In this study, we proposed an adversarial learning-based AuxCNN to support the training of deep neural networks for medical image classification.
arXiv Detail & Related papers (2022-06-23T06:57:17Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection [0.9883261192383611]
We propose a novel Gated Context Attention Network (GCA-Net) that utilizes the non-local attention block for global context learning.
We show that our method outperforms state-of-the-art networks by an average of 4.2%-5.4% AUC on multiple benchmark datasets.
arXiv Detail & Related papers (2021-12-08T14:13:14Z) - Where to Look: A Unified Attention Model for Visual Recognition with
Reinforcement Learning [5.247711598719703]
We propose to unify the top-down and bottom-up attention together for recurrent visual attention.
Our model exploits the image pyramids and Q-learning to select regions of interests in the top-down attention mechanism.
We train our model in an end-to-end reinforcement learning framework, and evaluate our method on visual classification tasks.
arXiv Detail & Related papers (2021-11-13T18:44:50Z) - Cascade Network with Guided Loss and Hybrid Attention for Finding Good
Correspondences [33.65360396430535]
Given a putative correspondence set of an image pair, we propose a neural network which finds correct correspondences by a binary-class classifier.
We propose a new Guided Loss that can directly use evaluation criterion (Fn-measure) as guidance to dynamically adjust the objective function.
We then propose a hybrid attention block to extract feature, which integrates the Bayesian context normalization (BACN) and channel-wise attention (CA)
arXiv Detail & Related papers (2021-01-31T08:33:20Z) - Cascade Network with Guided Loss and Hybrid Attention for Two-view
Geometry [32.52184271700281]
We propose a Guided Loss to establish the direct negative correlation between the loss and Fn-measure.
We then propose a hybrid attention block to extract feature.
Experiments have shown that our network achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-07-11T07:44:04Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.