RT3D: Achieving Real-Time Execution of 3D Convolutional Neural Networks
on Mobile Devices
- URL: http://arxiv.org/abs/2007.09835v2
- Date: Sun, 3 Jan 2021 18:03:16 GMT
- Title: RT3D: Achieving Real-Time Execution of 3D Convolutional Neural Networks
on Mobile Devices
- Authors: Wei Niu, Mengshu Sun, Zhengang Li, Jou-An Chen, Jiexiong Guan, Xipeng
Shen, Yanzhi Wang, Sijia Liu, Xue Lin, Bin Ren
- Abstract summary: This paper proposes RT3D, a model compression and mobile acceleration framework for 3D CNNs.
For the first time, real-time execution of 3D CNNs is achieved on off-the-shelf mobiles.
- Score: 57.877112704841366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile devices are becoming an important carrier for deep learning tasks, as
they are being equipped with powerful, high-end mobile CPUs and GPUs. However,
it is still a challenging task to execute 3D Convolutional Neural Networks
(CNNs) targeting for real-time performance, besides high inference accuracy.
The reason is more complex model structure and higher model dimensionality
overwhelm the available computation/storage resources on mobile devices. A
natural way may be turning to deep learning weight pruning techniques. However,
the direct generalization of existing 2D CNN weight pruning methods to 3D CNNs
is not ideal for fully exploiting mobile parallelism while achieving high
inference accuracy.
This paper proposes RT3D, a model compression and mobile acceleration
framework for 3D CNNs, seamlessly integrating neural network weight pruning and
compiler code generation techniques. We propose and investigate two structured
sparsity schemes i.e., the vanilla structured sparsity and kernel group
structured (KGS) sparsity that are mobile acceleration friendly. The vanilla
sparsity removes whole kernel groups, while KGS sparsity is a more fine-grained
structured sparsity that enjoys higher flexibility while exploiting full
on-device parallelism. We propose a reweighted regularization pruning algorithm
to achieve the proposed sparsity schemes. The inference time speedup due to
sparsity is approaching the pruning rate of the whole model FLOPs (floating
point operations). RT3D demonstrates up to 29.1$\times$ speedup in end-to-end
inference time comparing with current mobile frameworks supporting 3D CNNs,
with moderate 1%-1.5% accuracy loss. The end-to-end inference time for 16 video
frames could be within 150 ms, when executing representative C3D and R(2+1)D
models on a cellphone. For the first time, real-time execution of 3D CNNs is
achieved on off-the-shelf mobiles.
Related papers
- Maximizing Spatio-Temporal Entropy of Deep 3D CNNs for Efficient Video
Recognition [25.364148451584356]
3D convolution neural networks (CNNs) have been the prevailing option for video recognition.
We propose to automatically design efficient 3D CNN architectures via a novel training-free neural architecture search approach.
Experiments on Something-Something V1&V2 and Kinetics400 demonstrate that the E3D family achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-05T15:11:53Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Continual 3D Convolutional Neural Networks for Real-time Processing of
Videos [93.73198973454944]
We introduce Continual 3D Contemporalal Neural Networks (Co3D CNNs)
Co3D CNNs process videos frame-by-frame rather than by clip by clip.
We show that Co3D CNNs initialised on the weights from preexisting state-of-the-art video recognition models reduce floating point operations for frame-wise computations by 10.0-12.4x while improving accuracy on Kinetics-400 by 2.3-3.8x.
arXiv Detail & Related papers (2021-05-31T18:30:52Z) - MoViNets: Mobile Video Networks for Efficient Video Recognition [52.49314494202433]
3D convolutional neural networks (CNNs) are accurate at video recognition but require large computation and memory budgets.
We propose a three-step approach to improve computational efficiency while substantially reducing the peak memory usage of 3D CNNs.
arXiv Detail & Related papers (2021-03-21T23:06:38Z) - RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs [32.054160078692036]
We introduce a Resource Aware Neuron Pruning (RANP) algorithm that prunes 3D CNNs to high sparsity levels.
Our algorithm leads to roughly 50%-95% reduction in FLOPs and 35%-80% reduction in memory with negligible loss in accuracy compared to the unpruned networks.
arXiv Detail & Related papers (2021-02-09T04:35:29Z) - 3D CNNs with Adaptive Temporal Feature Resolutions [83.43776851586351]
Similarity Guided Sampling (SGS) module can be plugged into any existing 3D CNN architecture.
SGS empowers 3D CNNs by learning the similarity of temporal features and grouping similar features together.
Our evaluations show that the proposed module improves the state-of-the-art by reducing the computational cost (GFLOPs) by half while preserving or even improving the accuracy.
arXiv Detail & Related papers (2020-11-17T14:34:05Z) - Making a Case for 3D Convolutions for Object Segmentation in Videos [16.167397418720483]
We show that 3D convolutional networks can be effectively applied to dense video prediction tasks such as salient object segmentation.
We propose a 3D decoder architecture, that comprises novel 3D Global Convolution layers and 3D Refinement modules.
Our approach outperforms existing state-of-the-arts by a large margin on the DAVIS'16 Unsupervised, FBMS and ViSal benchmarks.
arXiv Detail & Related papers (2020-08-26T12:24:23Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.