Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent
- URL: http://arxiv.org/abs/2007.09971v2
- Date: Mon, 19 Oct 2020 10:58:39 GMT
- Title: Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent
- Authors: Riccardo Barbano, Chen Zhang, Simon Arridge, Bangti Jin
- Abstract summary: Recent advances in inverse problems leverage powerful data-driven models, e.g., deep neural networks.
We develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks.
- Score: 4.029853654012035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in reconstruction methods for inverse problems leverage
powerful data-driven models, e.g., deep neural networks. These techniques have
demonstrated state-of-the-art performances for several imaging tasks, but they
often do not provide uncertainty on the obtained reconstruction. In this work,
we develop a scalable, data-driven, knowledge-aided computational framework to
quantify the model uncertainty via Bayesian neural networks. The approach
builds on, and extends deep gradient descent, a recently developed greedy
iterative training scheme, and recasts it within a probabilistic framework.
Scalability is achieved by being hybrid in the architecture: only the last
layer of each block is Bayesian, while the others remain deterministic, and by
being greedy in training. The framework is showcased on one representative
medical imaging modality, viz. computed tomography with either sparse view or
limited view data, and exhibits competitive performance with respect to
state-of-the-art benchmarks, e.g., total variation, deep gradient descent and
learned primal-dual.
Related papers
- Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem.
The primary objective of the proposed model is to achieve a good balance between denoising and the preservation of fine details and edges.
A convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training.
arXiv Detail & Related papers (2024-04-25T08:58:41Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Meta Adversarial Perturbations [66.43754467275967]
We show the existence of a meta adversarial perturbation (MAP)
MAP causes natural images to be misclassified with high probability after being updated through only a one-step gradient ascent update.
We show that these perturbations are not only image-agnostic, but also model-agnostic, as a single perturbation generalizes well across unseen data points and different neural network architectures.
arXiv Detail & Related papers (2021-11-19T16:01:45Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Blind Image Restoration with Flow Based Priors [19.190289348734215]
In a blind setting with unknown degradations, a good prior remains crucial.
We propose using normalizing flows to model the distribution of the target content and to use this as a prior in a maximum a posteriori (MAP) formulation.
To the best of our knowledge, this is the first work that explores normalizing flows as prior in image enhancement problems.
arXiv Detail & Related papers (2020-09-09T21:40:11Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.