Auxiliary Diagnosing Coronary Stenosis Using Machine Learning
- URL: http://arxiv.org/abs/2007.10316v4
- Date: Tue, 7 Sep 2021 12:48:30 GMT
- Title: Auxiliary Diagnosing Coronary Stenosis Using Machine Learning
- Authors: Weijun Zhu, Fengyuan Lu, Xiaoyu Yang and En Li
- Abstract summary: The four machine learning (ML) algorithms, i.e., Boosted Tree (BT), Decision Tree (DT), Logistic Regression (LR) and Random Forest (RF) are employed in this paper.
The experimental results show that: RF performs better than other three algorithms, and the former algorithm classifies whether an individual has CS with an accuracy of 95.7%.
- Score: 2.4100803794273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to accurately classify and diagnose whether an individual has Coronary
Stenosis (CS) without invasive physical examination? This problem has not been
solved satisfactorily. To this end, the four machine learning (ML) algorithms,
i.e., Boosted Tree (BT), Decision Tree (DT), Logistic Regression (LR) and
Random Forest (RF) are employed in this paper. First, eleven features including
basic information of an individual, symptoms and results of routine physical
examination are selected, as well as one label is specified, indicating whether
an individual suffers from different severity of coronary artery stenosis or
not. On the basis of it, a sample set is constructed. Second, each of these
four ML algorithms learns from the sample set to obtain the corresponding
optimal classified results, respectively. The experimental results show that:
RF performs better than other three algorithms, and the former algorithm
classifies whether an individual has CS with an accuracy of 95.7% (=90/94).
Related papers
- A data balancing approach towards design of an expert system for Heart Disease Prediction [0.9895793818721335]
Heart disease is a serious global health issue that claims millions of lives every year.
We employed five machine learning methods in this paper: Decision Tree (DT), Random Forest (RF), Linear Discriminant Analysis, Extra TreeBoost, and AdaBoost.
The accuracy of the Random Forest and Decision Tree model was 99.83%.
arXiv Detail & Related papers (2024-07-26T08:56:13Z) - Two new feature selection methods based on learn-heuristic techniques for breast cancer prediction: A comprehensive analysis [6.796017024594715]
We suggest two novel feature selection (FS) methods based upon an imperialist competitive algorithm (ICA) and a bat algorithm (BA)
This study aims to enhance diagnostic models' efficiency and present a comprehensive analysis to help clinical physicians make much more precise and reliable decisions than before.
arXiv Detail & Related papers (2024-07-19T19:07:53Z) - A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge [30.611482996378683]
Image and disease variability hinder the development of generalizable AI algorithms with clinical value.
We present a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion (ISLES) challenge.
We combined top-performing algorithms into an ensemble model that overcomes the limitations of individual solutions.
arXiv Detail & Related papers (2024-03-28T13:56:26Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Multi-Dimensional Ability Diagnosis for Machine Learning Algorithms [88.93372675846123]
We propose a task-agnostic evaluation framework Camilla for evaluating machine learning algorithms.
We use cognitive diagnosis assumptions and neural networks to learn the complex interactions among algorithms, samples and the skills of each sample.
In our experiments, Camilla outperforms state-of-the-art baselines on the metric reliability, rank consistency and rank stability.
arXiv Detail & Related papers (2023-07-14T03:15:56Z) - Exploring traditional machine learning for identification of
pathological auscultations [0.39577682622066246]
Digital 6-channel auscultations of 45 patients were used in various machine learning scenarios.
The aim was to distinguish between normal and anomalous pulmonary sounds.
Supervised models showed a consistent advantage over unsupervised ones.
arXiv Detail & Related papers (2022-09-01T18:03:21Z) - Statistical and Computational Phase Transitions in Group Testing [73.55361918807883]
We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease.
We consider two different simple random procedures for assigning individuals tests.
arXiv Detail & Related papers (2022-06-15T16:38:50Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.