Learning Person Re-identification Models from Videos with Weak
Supervision
- URL: http://arxiv.org/abs/2007.10631v1
- Date: Tue, 21 Jul 2020 07:23:32 GMT
- Title: Learning Person Re-identification Models from Videos with Weak
Supervision
- Authors: Xueping Wang, Sujoy Paul, Dripta S. Raychaudhuri, Min Liu, Yaonan Wang
and Amit K. Roy-Chowdhury, Fellow, IEEE
- Abstract summary: We introduce the problem of learning person re-identification models from videos with weak supervision.
We propose a multiple instance attention learning framework for person re-identification using such video-level labels.
The attention weights are obtained based on all person images instead of person tracklets in a video, making our learned model less affected by noisy annotations.
- Score: 53.53606308822736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most person re-identification methods, being supervised techniques, suffer
from the burden of massive annotation requirement. Unsupervised methods
overcome this need for labeled data, but perform poorly compared to the
supervised alternatives. In order to cope with this issue, we introduce the
problem of learning person re-identification models from videos with weak
supervision. The weak nature of the supervision arises from the requirement of
video-level labels, i.e. person identities who appear in the video, in contrast
to the more precise framelevel annotations. Towards this goal, we propose a
multiple instance attention learning framework for person re-identification
using such video-level labels. Specifically, we first cast the video person
re-identification task into a multiple instance learning setting, in which
person images in a video are collected into a bag. The relations between videos
with similar labels can be utilized to identify persons, on top of that, we
introduce a co-person attention mechanism which mines the similarity
correlations between videos with person identities in common. The attention
weights are obtained based on all person images instead of person tracklets in
a video, making our learned model less affected by noisy annotations. Extensive
experiments demonstrate the superiority of the proposed method over the related
methods on two weakly labeled person re-identification datasets.
Related papers
- Active Learning for Video Classification with Frame Level Queries [13.135234328352885]
We propose a novel active learning framework for video classification.
Our framework identifies a batch of exemplar videos, together with a set of informative frames for each video.
This involves much less manual work than watching the complete video to come up with a label.
arXiv Detail & Related papers (2023-07-10T15:47:13Z) - Handling Label Uncertainty for Camera Incremental Person
Re-Identification [17.5026399908583]
Incremental learning for person re-identification (ReID) aims to develop models that can be trained with a continuous data stream.
New data collected from new cameras may probably contain an unknown proportion of identities seen before.
We propose a novel framework ExtendOVA to handle the class overlap issue.
arXiv Detail & Related papers (2022-10-17T02:59:54Z) - CGUA: Context-Guided and Unpaired-Assisted Weakly Supervised Person
Search [54.106662998673514]
We introduce a Context-Guided and Unpaired-Assisted (CGUA) weakly supervised person search framework.
Specifically, we propose a novel Context-Guided Cluster (CGC) algorithm to leverage context information in the clustering process.
Our method achieves comparable or better performance to the state-of-the-art supervised methods by leveraging more diverse unlabeled data.
arXiv Detail & Related papers (2022-03-27T13:57:30Z) - Learning to Track Instances without Video Annotations [85.9865889886669]
We introduce a novel semi-supervised framework by learning instance tracking networks with only a labeled image dataset and unlabeled video sequences.
We show that even when only trained with images, the learned feature representation is robust to instance appearance variations.
In addition, we integrate this module into single-stage instance segmentation and pose estimation frameworks.
arXiv Detail & Related papers (2021-04-01T06:47:41Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations.
We propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera.
Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model.
arXiv Detail & Related papers (2020-12-19T12:37:04Z) - Exploiting Temporal Coherence for Self-Supervised One-shot Video
Re-identification [44.9767103065442]
One-shot re-identification is a potential candidate towards reducing this labeling effort.
Current one-shot re-identification methods function by modeling the inter-relationships amongst the labeled and the unlabeled data.
We propose a new framework named Temporal Consistency Progressive Learning, which uses temporal coherence as a novel self-supervised auxiliary task.
arXiv Detail & Related papers (2020-07-21T19:49:06Z) - CycAs: Self-supervised Cycle Association for Learning Re-identifiable
Descriptions [61.724894233252414]
This paper proposes a self-supervised learning method for the person re-identification (re-ID) problem.
Existing unsupervised methods usually rely on pseudo labels, such as those from video tracklets or clustering.
We introduce a different unsupervised method that allows us to learn pedestrian embeddings from raw videos, without resorting to pseudo labels.
arXiv Detail & Related papers (2020-07-15T09:52:35Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.