Optoelectronic based Quantum Radar: Entanglement Sustainability
Improving at High Temperature
- URL: http://arxiv.org/abs/2007.10670v1
- Date: Tue, 21 Jul 2020 09:14:45 GMT
- Title: Optoelectronic based Quantum Radar: Entanglement Sustainability
Improving at High Temperature
- Authors: Ahmad Salmanogli and Dincer Gokcen
- Abstract summary: Operation at high temperature is so crucial to preserve the entanglement between modes.
Optical cavity is coupled to the microwave cavity through a Varactor diode excited by a photodetector.
At some specific values of the coupling factor, the modes remained completely entangled up to 5.5 K and partially entangled around 50 K.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, the main focus is laid on the design of the optoelectronic
quantum illumination system to enhance the system performance, such as
operation at high temperature and confinement of the thermally excited photons.
The optomechanical based quantum illumination system has wieldy been studied,
and the results showed that operation at high temperature is so crucial to
preserve the entanglement between modes. The main problem is that the
mechanical part has to operate with a low frequency with which a large number
of thermally excited photons are generated and worsened the entanglement. To
solve this problem, we focus on replacing the mechanical part with the
optoelectronic components. In this system, the optical cavity is coupled to the
microwave cavity through a Varactor diode excited by a photodetector. The
photodetector is excited by the optical cavity modes and drives the current
flow as a function of incident light drives the Varactor diode at which the
voltage drop is a function of current generated by the photodetector. To
engineer the system, the effect of some parameters is investigated. One of the
critical parameters is the microwave cavity to the photodetector coupling
factor. Our results indicate that this coupling factor induces a significant
difference in the new design as compared to the optomechanical quantum
illumination system. At some specific values of the coupling factor, the modes
remained completely entangled up to 5.5 K and partially entangled around 50 K.
Related papers
- Microwave-Optical Entanglement from Pulse-pumped Electro-optomechanics [1.9672172405344497]
Entangling microwave and optical photons is one of the promising ways to realize quantum transduction through quantum teleportation.
This paper investigates the entanglement of microwave-optical photon pairs generated from an electro-optomechanical system driven by a blue-detuned pulsed Gaussian pump.
arXiv Detail & Related papers (2024-07-26T22:13:54Z) - Spectral signature of high-order photon processes mediated by
Cooper-pair pairing [0.0]
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
This work explores a new regime of high-order photon interactions in microwave quantum optics, with applications ranging from multi-photon quantum logic to the study of highly correlated microwave radiation.
arXiv Detail & Related papers (2023-12-22T21:29:25Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Quantum heat diode versus light emission in circuit quantum
electrodynamical system [0.14502611532302037]
We design a thermal diode in terms of the two-photon Rabi model of the circuit QED system.
We find that the thermal diode can not only be realized in the resonant coupling but also achieve better performance.
arXiv Detail & Related papers (2023-04-04T01:32:44Z) - Brillouin optomechanics in the quantum ground state [0.0]
Bulk acoustic wave (BAW) resonators are attractive as intermediaries in a microwave-to-optical transducer.
In this work, we demonstrate ground state operation of a Brillouin optomechanical system composed of a quartz BAW resonator inside an optical cavity.
arXiv Detail & Related papers (2023-03-08T15:56:52Z) - Quantum scrambling in a toy model of photodetectors [9.842140146649346]
Quantum measurement involves the interaction between a quantum system and a macroscopic measurement apparatus containing many degrees of freedom.
In this paper, we study the quantum scrambling process in an effective toy model of photodetectors in three different physical scenarios.
arXiv Detail & Related papers (2022-08-30T11:59:07Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.