Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning
- URL: http://arxiv.org/abs/2007.10734v1
- Date: Tue, 21 Jul 2020 11:48:22 GMT
- Title: Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning
- Authors: Iksung Kang, Alexandre Goy, George Barbastathis
- Abstract summary: Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
- Score: 68.9515120904028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited-angle tomography of strongly scattering quasi-transparent objects is
a challenging, highly ill-posed problem with practical implications in medical
and biological imaging, manufacturing, automation, and environmental and food
security. Regularizing priors are necessary to reduce artifacts by improving
the condition of such problems. Recently, it was shown that one effective way
to learn the priors for strongly scattering yet highly structured 3D objects,
e.g. layered and Manhattan, is by a static neural network [Goy et al, Proc.
Natl. Acad. Sci. 116, 19848-19856 (2019)]. Here, we present a radically
different approach where the collection of raw images from multiple angles is
viewed analogously to a dynamical system driven by the object-dependent forward
scattering operator. The sequence index in angle of illumination plays the role
of discrete time in the dynamical system analogy. Thus, the imaging problem
turns into a problem of nonlinear system identification, which also suggests
dynamical learning as better fit to regularize the reconstructions. We devised
a recurrent neural network (RNN) architecture with a novel split-convolutional
gated recurrent unit (SC-GRU) as the fundamental building block. Through
comprehensive comparison of several quantitative metrics, we show that the
dynamic method improves upon previous static approaches with fewer artifacts
and better overall reconstruction fidelity.
Related papers
- Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
Simultaneous localization and mapping (SLAM) with implicit neural representations has received extensive attention.
We propose a novel SLAM framework for dynamic environments.
arXiv Detail & Related papers (2024-07-18T09:35:48Z) - The Dynamic Net Architecture: Learning Robust and Holistic Visual Representations Through Self-Organizing Networks [3.9848584845601014]
We present a novel intelligent-system architecture called "Dynamic Net Architecture" (DNA)
DNA relies on recurrence-stabilized networks and discuss it in application to vision.
arXiv Detail & Related papers (2024-07-08T06:22:10Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
We propose a novel object-centric reinforcement learning algorithm combining actor-critic and model-based approaches.
We use a transformer encoder to extract object representations and graph neural networks to approximate the dynamics of an environment.
Our algorithm performs better in a visually complex 3D robotic environment and a 2D environment with compositional structure than the state-of-the-art model-free actor-critic algorithm.
arXiv Detail & Related papers (2023-10-26T06:05:12Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Generalized Teacher Forcing for Learning Chaotic Dynamics [9.841893058953625]
Chaotic dynamical systems (DS) are ubiquitous in nature and society. Often we are interested in reconstructing such systems from observed time series for prediction or mechanistic insight.
We show on several DS that with these amendments we can reconstruct DS better than current SOTA algorithms, in much lower dimensions.
This work thus led to a simple yet powerful DS reconstruction algorithm which is highly interpretable at the same time.
arXiv Detail & Related papers (2023-06-07T13:04:34Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - Learning without gradient descent encoded by the dynamics of a
neurobiological model [7.952666139462592]
We introduce a conceptual approach to machine learning that takes advantage of a neurobiologically derived model of dynamic signaling.
We show that MNIST images can be uniquely encoded and classified by the dynamics of geometric networks with nearly state-of-the-art accuracy in an unsupervised way.
arXiv Detail & Related papers (2021-03-16T07:03:04Z) - Self-Organized Operational Neural Networks for Severe Image Restoration
Problems [25.838282412957675]
Discnative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs.
We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems.
We propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly.
arXiv Detail & Related papers (2020-08-29T02:19:41Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.