Byzantine-Resilient Secure Federated Learning
- URL: http://arxiv.org/abs/2007.11115v2
- Date: Sat, 20 Feb 2021 21:57:10 GMT
- Title: Byzantine-Resilient Secure Federated Learning
- Authors: Jinhyun So, Basak Guler, A. Salman Avestimehr
- Abstract summary: This paper presents the first single-server Byzantine-resilient secure aggregation framework (BREA) for secure federated learning.
BREA is based on an integrated, verifiable detection, and secure model aggregation approach to guarantee Byzantine-resilience convergence simultaneously.
Our experiments demonstrate convergence in the presence of Byzantine users, and comparable accuracy to conventional federated learning benchmarks.
- Score: 2.578242050187029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Secure federated learning is a privacy-preserving framework to improve
machine learning models by training over large volumes of data collected by
mobile users. This is achieved through an iterative process where, at each
iteration, users update a global model using their local datasets. Each user
then masks its local model via random keys, and the masked models are
aggregated at a central server to compute the global model for the next
iteration. As the local models are protected by random masks, the server cannot
observe their true values. This presents a major challenge for the resilience
of the model against adversarial (Byzantine) users, who can manipulate the
global model by modifying their local models or datasets. Towards addressing
this challenge, this paper presents the first single-server Byzantine-resilient
secure aggregation framework (BREA) for secure federated learning. BREA is
based on an integrated stochastic quantization, verifiable outlier detection,
and secure model aggregation approach to guarantee Byzantine-resilience,
privacy, and convergence simultaneously. We provide theoretical convergence and
privacy guarantees and characterize the fundamental trade-offs in terms of the
network size, user dropouts, and privacy protection. Our experiments
demonstrate convergence in the presence of Byzantine users, and comparable
accuracy to conventional federated learning benchmarks.
Related papers
- Proximity-based Self-Federated Learning [1.0066310107046081]
This paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning.
Unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy.
arXiv Detail & Related papers (2024-07-17T08:44:45Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - BRFL: A Blockchain-based Byzantine-Robust Federated Learning Model [8.19957400564017]
Federated learning, which stores data in distributed nodes and shares only model parameters, has gained significant attention for addressing this concern.
A challenge arises in federated learning due to the Byzantine Attack Problem, where malicious local models can compromise the global model's performance during aggregation.
This article proposes the integration of Byzantine-Robust Federated Learning (BRLF) model that combines federated learning with blockchain technology.
arXiv Detail & Related papers (2023-10-20T10:21:50Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - A New Implementation of Federated Learning for Privacy and Security
Enhancement [27.612480082254486]
Federated learning (FL) has emerged as a new machine learning setting.
No local data needs to be shared, and privacy can be well protected.
We propose a model update based federated averaging algorithm to defend against Byzantine attacks.
arXiv Detail & Related papers (2022-08-03T03:13:19Z) - Certified Robustness in Federated Learning [54.03574895808258]
We study the interplay between federated training, personalization, and certified robustness.
We find that the simple federated averaging technique is effective in building not only more accurate, but also more certifiably-robust models.
arXiv Detail & Related papers (2022-06-06T12:10:53Z) - RobustFed: A Truth Inference Approach for Robust Federated Learning [9.316565110931743]
Federated learning is a framework that enables clients to train a collaboratively global model under a central server's orchestration.
The aggregation step in federated learning is vulnerable to adversarial attacks as the central server cannot manage clients' behavior.
We propose a novel robust aggregation algorithm inspired by the truth inference methods in crowdsourcing.
arXiv Detail & Related papers (2021-07-18T09:34:57Z) - FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning [23.726336635748783]
Federated learning aims to collaboratively train a strong global model by accessing users' locally trained models but not their own data.
A crucial step is therefore to aggregate local models into a global model, which has been shown challenging when users have non-i.i.d. data.
We propose a novel aggregation algorithm named FedBE, which takes a Bayesian inference perspective by sampling higher-quality global models.
arXiv Detail & Related papers (2020-09-04T01:18:25Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
Federated learning is a method of training models on private data distributed over multiple devices.
We propose a new federated learning algorithm that jointly learns compact local representations on each device.
We also evaluate on the task of personalized mood prediction from real-world mobile data where privacy is key.
arXiv Detail & Related papers (2020-01-06T12:40:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.