A graphical calculus for integration over random diagonal unitary
matrices
- URL: http://arxiv.org/abs/2007.11219v2
- Date: Fri, 11 Dec 2020 11:58:01 GMT
- Title: A graphical calculus for integration over random diagonal unitary
matrices
- Authors: Ion Nechita and Satvik Singh
- Abstract summary: We provide a graphical calculus for computing averages of tensor network diagrams.
We exploit the order structure of the partially ordered set of uniform block permutations.
A similar calculus is developed for random vectors consisting of independent uniform signs.
- Score: 1.5229257192293197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a graphical calculus for computing averages of tensor network
diagrams with respect to the distribution of random vectors containing
independent uniform complex phases. Our method exploits the order structure of
the partially ordered set of uniform block permutations. A similar calculus is
developed for random vectors consisting of independent uniform signs, based on
the combinatorics of the partially ordered set of even partitions. We employ
our method to extend some of the results by Johnston and MacLean on the family
of local diagonal unitary invariant matrices. Furthermore, our graphical
approach applies just as well to the real (orthogonal) case, where we introduce
the notion of triplewise complete positivity to study the condition for
separability of the relevant bipartite matrices. Finally, we analyze the
twirling of linear maps between matrix algebras by independent diagonal unitary
matrices, showcasing another application of our method.
Related papers
- A Bayesian Perspective for Determinant Minimization Based Robust
Structured Matrix Factorizatio [10.355894890759377]
We introduce a Bayesian perspective for the structured matrix factorization problem.
We show that the corresponding maximum a posteriori estimation problem boils down to the robust determinant approach for structured matrix factorization.
arXiv Detail & Related papers (2023-02-16T16:48:41Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Quantitative deterministic equivalent of sample covariance matrices with
a general dependence structure [0.0]
We prove quantitative bounds involving both the dimensions and the spectral parameter, in particular allowing it to get closer to the real positive semi-line.
As applications, we obtain a new bound for the convergence in Kolmogorov distance of the empirical spectral distributions of these general models.
arXiv Detail & Related papers (2022-11-23T15:50:31Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - An Equivalence Principle for the Spectrum of Random Inner-Product Kernel
Matrices with Polynomial Scalings [21.727073594338297]
This study is motivated by applications in machine learning and statistics.
We establish the weak limit of the empirical distribution of these random matrices in a scaling regime.
Our results can be characterized as the free additive convolution between a Marchenko-Pastur law and a semicircle law.
arXiv Detail & Related papers (2022-05-12T18:50:21Z) - Riemannian statistics meets random matrix theory: towards learning from
high-dimensional covariance matrices [2.352645870795664]
This paper shows that there seems to exist no practical method of computing the normalising factors associated with Riemannian Gaussian distributions on spaces of high-dimensional covariance matrices.
It is shown that this missing method comes from an unexpected new connection with random matrix theory.
Numerical experiments are conducted which demonstrate how this new approximation can unlock the difficulties which have impeded applications to real-world datasets.
arXiv Detail & Related papers (2022-03-01T03:16:50Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Diagonal unitary and orthogonal symmetries in quantum theory [1.5229257192293197]
We show that this class of matrices (and maps) encompasses a wide variety of scenarios, thereby unifying their study.
For linear maps, we provide explicit characterizations of the stated covariance in terms of their Kraus, Stinespring, and Choi representations.
We also describe the invariant subspaces of these maps and use their structure to provide necessary and sufficient conditions for separability of the associated invariant bipartite states.
arXiv Detail & Related papers (2020-10-15T17:25:38Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.