Towards Social & Engaging Peer Learning: Predicting Backchanneling and
Disengagement in Children
- URL: http://arxiv.org/abs/2007.11346v1
- Date: Wed, 22 Jul 2020 11:16:42 GMT
- Title: Towards Social & Engaging Peer Learning: Predicting Backchanneling and
Disengagement in Children
- Authors: Mononito Goswami, Minkush Manuja and Maitree Leekha
- Abstract summary: Social robots and interactive computer applications have the potential to foster early language development in young children by acting as peer learning companions.
We develop models to predict whether the listener will lose attention (Listener Disengagement Prediction, LDP) and the extent to which a robot should generate backchanneling responses (Backchanneling Extent Prediction, BEP)
Our experiments revealed the utility of multimodal features such as pupil dilation, blink rate, head movements, facial action units which have never been used before.
- Score: 10.312968200748116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social robots and interactive computer applications have the potential to
foster early language development in young children by acting as peer learning
companions. However, studies have found that children only trust robots which
behave in a natural and interpersonal manner. To help robots come across as
engaging and attentive peer learning companions, we develop models to predict
whether the listener will lose attention (Listener Disengagement Prediction,
LDP) and the extent to which a robot should generate backchanneling responses
(Backchanneling Extent Prediction, BEP) in the next few seconds. We pose LDP
and BEP as time series classification problems and conduct several experiments
to assess the impact of different time series characteristics and feature sets
on the predictive performance of our model. Using statistics & machine
learning, we also examine which socio-demographic factors influence the amount
of time children spend backchanneling and listening to their peers. To lend
interpretability to our models, we also analyzed critical features responsible
for their predictive performance. Our experiments revealed the utility of
multimodal features such as pupil dilation, blink rate, head movements, facial
action units which have never been used before. We also found that the dynamics
of time series features are rich predictors of listener disengagement and
backchanneling.
Related papers
- ReaLJam: Real-Time Human-AI Music Jamming with Reinforcement Learning-Tuned Transformers [53.63950017886757]
We introduce ReaLJam, an interface and protocol for live musical jamming sessions between a human and a Transformer-based AI agent trained with reinforcement learning.
We enable real-time interactions using the concept of anticipation, where the agent continually predicts how the performance will unfold and visually conveys its plan to the user.
arXiv Detail & Related papers (2025-02-28T17:42:58Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - When to generate hedges in peer-tutoring interactions [1.0466434989449724]
The study uses a naturalistic face-to-face dataset annotated for natural language turns, conversational strategies, tutoring strategies, and nonverbal behaviours.
Results show that embedding layers, that capture the semantic information of the previous turns, significantly improves the model's performance.
We discover that the eye gaze of both the tutor and the tutee has a significant impact on hedge prediction.
arXiv Detail & Related papers (2023-07-28T14:29:19Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Word Acquisition in Neural Language Models [0.38073142980733]
We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words.
We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models.
arXiv Detail & Related papers (2021-10-05T23:26:16Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student.
ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges.
arXiv Detail & Related papers (2020-10-06T11:22:27Z) - A robot that counts like a child: a developmental model of counting and
pointing [69.26619423111092]
A novel neuro-robotics model capable of counting real items is introduced.
The model allows us to investigate the interaction between embodiment and numerical cognition.
The trained model is able to count a set of items and at the same time points to them.
arXiv Detail & Related papers (2020-08-05T21:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.