Contact and Human Dynamics from Monocular Video
- URL: http://arxiv.org/abs/2007.11678v2
- Date: Fri, 24 Jul 2020 04:02:14 GMT
- Title: Contact and Human Dynamics from Monocular Video
- Authors: Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan Russell, Ruben
Villegas, Jimei Yang
- Abstract summary: Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
- Score: 73.47466545178396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep models predict 2D and 3D kinematic poses from video that are
approximately accurate, but contain visible errors that violate physical
constraints, such as feet penetrating the ground and bodies leaning at extreme
angles. In this paper, we present a physics-based method for inferring 3D human
motion from video sequences that takes initial 2D and 3D pose estimates as
input. We first estimate ground contact timings with a novel prediction network
which is trained without hand-labeled data. A physics-based trajectory
optimization then solves for a physically-plausible motion, based on the
inputs. We show this process produces motions that are significantly more
realistic than those from purely kinematic methods, substantially improving
quantitative measures of both kinematic and dynamic plausibility. We
demonstrate our method on character animation and pose estimation tasks on
dynamic motions of dancing and sports with complex contact patterns.
Related papers
- Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
We propose a novel method to selectively incorporate the physics models with the kinematics observations in an online setting.
A recurrent neural network is introduced to realize a Kalman filter that attentively balances the kinematics input and simulated motion.
The proposed approach excels in the physics-based human pose estimation task and demonstrates the physical plausibility of the predictive dynamics.
arXiv Detail & Related papers (2024-10-10T10:24:59Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - D&D: Learning Human Dynamics from Dynamic Camera [55.60512353465175]
We present D&D (Learning Human Dynamics from Dynamic Camera), which leverages the laws of physics to reconstruct 3D human motion from the in-the-wild videos with a moving camera.
Our approach is entirely neural-based and runs without offline optimization or simulation in physics engines.
arXiv Detail & Related papers (2022-09-19T06:51:02Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
We focus on the task of estimating a physically plausible articulated human motion from monocular video.
Existing approaches that do not consider physics often produce temporally inconsistent output with motion artifacts.
We show that our approach achieves competitive results with respect to existing physics-based methods on the Human3.6M benchmark.
arXiv Detail & Related papers (2022-05-24T18:02:49Z) - Action2video: Generating Videos of Human 3D Actions [31.665831044217363]
We aim to tackle the interesting yet challenging problem of generating videos of diverse and natural human motions from prescribed action categories.
Key issue lies in the ability to synthesize multiple distinct motion sequences that are realistic in their visual appearances.
Action2motionally generates plausible 3D pose sequences of a prescribed action category, which are processed and rendered by motion2video to form 2D videos.
arXiv Detail & Related papers (2021-11-12T20:20:37Z) - Estimating 3D Motion and Forces of Human-Object Interactions from
Internet Videos [49.52070710518688]
We introduce a method to reconstruct the 3D motion of a person interacting with an object from a single RGB video.
Our method estimates the 3D poses of the person together with the object pose, the contact positions and the contact forces on the human body.
arXiv Detail & Related papers (2021-11-02T13:40:18Z) - PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time [89.68248627276955]
Marker-less 3D motion capture from a single colour camera has seen significant progress.
However, it is a very challenging and severely ill-posed problem.
We present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture.
arXiv Detail & Related papers (2020-08-20T10:46:32Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.