History Repeats Itself: Human Motion Prediction via Motion Attention
- URL: http://arxiv.org/abs/2007.11755v1
- Date: Thu, 23 Jul 2020 02:12:27 GMT
- Title: History Repeats Itself: Human Motion Prediction via Motion Attention
- Authors: Wei Mao, Miaomiao Liu, Mathieu Salzmann
- Abstract summary: We introduce an attention-based feed-forward network that explicitly leverages the observation that human motion tends to repeat itself.
In particular, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences.
Our experiments on Human3.6M, AMASS and 3DPW evidence the benefits of our approach for both periodical and non-periodical actions.
- Score: 81.94175022575966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion prediction aims to forecast future human poses given a past
motion. Whether based on recurrent or feed-forward neural networks, existing
methods fail to model the observation that human motion tends to repeat itself,
even for complex sports actions and cooking activities. Here, we introduce an
attention-based feed-forward network that explicitly leverages this
observation. In particular, instead of modeling frame-wise attention via pose
similarity, we propose to extract motion attention to capture the similarity
between the current motion context and the historical motion sub-sequences.
Aggregating the relevant past motions and processing the result with a graph
convolutional network allows us to effectively exploit motion patterns from the
long-term history to predict the future poses. Our experiments on Human3.6M,
AMASS and 3DPW evidence the benefits of our approach for both periodical and
non-periodical actions. Thanks to our attention model, it yields
state-of-the-art results on all three datasets. Our code is available at
https://github.com/wei-mao-2019/HisRepItself.
Related papers
- Past Movements-Guided Motion Representation Learning for Human Motion Prediction [0.0]
We propose a self-supervised learning framework designed to enhance motion representation.
The framework consists of two stages: first, the network is pretrained through the self-reconstruction of past sequences, and the guided reconstruction of future sequences based on past movements.
Our method reduces the average prediction errors by 8.8% across Human3.6, 3DPW, and AMASS datasets.
arXiv Detail & Related papers (2024-08-04T17:00:37Z) - Learning Snippet-to-Motion Progression for Skeleton-based Human Motion
Prediction [14.988322340164391]
Existing Graph Convolutional Networks to achieve human motion prediction largely adopt a one-step scheme.
We observe that human motions have transitional patterns and can be split into snippets representative of each transition.
We propose a snippet-to-motion multi-stage framework that breaks motion prediction into sub-tasks easier to accomplish.
arXiv Detail & Related papers (2023-07-26T07:36:38Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Dyadic Human Motion Prediction [119.3376964777803]
We introduce a motion prediction framework that explicitly reasons about the interactions of two observed subjects.
Specifically, we achieve this by introducing a pairwise attention mechanism that models the mutual dependencies in the motion history of the two subjects.
This allows us to preserve the long-term motion dynamics in a more realistic way and more robustly predict unusual and fast-paced movements.
arXiv Detail & Related papers (2021-12-01T10:30:40Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - 3D Human motion anticipation and classification [8.069283749930594]
We propose a novel sequence-to-sequence model for human motion prediction and feature learning.
Our model learns to predict multiple future sequences of human poses from the same input sequence.
We show that it takes less than half the number of epochs to train an activity recognition network by using the feature learned from the discriminator.
arXiv Detail & Related papers (2020-12-31T00:19:39Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.