Weakly Supervised 3D Object Detection from Lidar Point Cloud
- URL: http://arxiv.org/abs/2007.11901v1
- Date: Thu, 23 Jul 2020 10:12:46 GMT
- Title: Weakly Supervised 3D Object Detection from Lidar Point Cloud
- Authors: Qinghao Meng, Wenguan Wang, Tianfei Zhou, Jianbing Shen, Luc Van Gool
and Dengxin Dai
- Abstract summary: It is laborious to manually label point cloud data for training high-quality 3D object detectors.
This work proposes a weakly supervised approach for 3D object detection, only requiring a small set of weakly annotated scenes.
Using only 500 weakly annotated scenes and 534 precisely labeled vehicle instances, our method achieves 85-95% the performance of current top-leading, fully supervised detectors.
- Score: 182.67704224113862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is laborious to manually label point cloud data for training high-quality
3D object detectors. This work proposes a weakly supervised approach for 3D
object detection, only requiring a small set of weakly annotated scenes,
associated with a few precisely labeled object instances. This is achieved by a
two-stage architecture design. Stage-1 learns to generate cylindrical object
proposals under weak supervision, i.e., only the horizontal centers of objects
are click-annotated on bird's view scenes. Stage-2 learns to refine the
cylindrical proposals to get cuboids and confidence scores, using a few
well-labeled object instances. Using only 500 weakly annotated scenes and 534
precisely labeled vehicle instances, our method achieves 85-95% the performance
of current top-leading, fully supervised detectors (which require 3, 712
exhaustively and precisely annotated scenes with 15, 654 instances). More
importantly, with our elaborately designed network architecture, our trained
model can be applied as a 3D object annotator, allowing both automatic and
active working modes. The annotations generated by our model can be used to
train 3D object detectors with over 94% of their original performance (under
manually labeled data). Our experiments also show our model's potential in
boosting performance given more training data. Above designs make our approach
highly practical and introduce new opportunities for learning 3D object
detection with reduced annotation burden.
Related papers
- PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection.
We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
arXiv Detail & Related papers (2023-08-14T07:45:54Z) - Weakly Supervised Monocular 3D Object Detection using Multi-View
Projection and Direction Consistency [78.76508318592552]
Monocular 3D object detection has become a mainstream approach in automatic driving for its easy application.
Most current methods still rely on 3D point cloud data for labeling the ground truths used in the training phase.
We propose a new weakly supervised monocular 3D objection detection method, which can train the model with only 2D labels marked on images.
arXiv Detail & Related papers (2023-03-15T15:14:00Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - DR-WLC: Dimensionality Reduction cognition for object detection and pose
estimation by Watching, Learning and Checking [30.58114448119465]
Existing object detection and pose estimation methods mostly adopt the same-dimensional data for training.
DR-WLC, a dimensionality reduction cognitive model, can perform both object detection and pose estimation tasks at the same time.
arXiv Detail & Related papers (2023-01-17T15:08:32Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3D object detection is an important task in computer vision.
Most existing methods require a large number of high-quality 3D annotations, which are expensive to collect.
We propose a novel semi-supervised framework based on pseudo-labeling for outdoor 3D object detection tasks.
arXiv Detail & Related papers (2021-08-15T02:58:43Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Self-Supervised Pretraining of 3D Features on any Point-Cloud [40.26575888582241]
We present a simple self-supervised pertaining method that can work with any 3D data without 3D registration.
We evaluate our models on 9 benchmarks for object detection, semantic segmentation, and object classification, where they achieve state-of-the-art results and can outperform supervised pretraining.
arXiv Detail & Related papers (2021-01-07T18:55:21Z) - Weakly Supervised 3D Object Detection from Point Clouds [27.70180601788613]
3D object detection aims to detect and localize the 3D bounding boxes of objects belonging to specific classes.
Existing 3D object detectors rely on annotated 3D bounding boxes during training, while these annotations could be expensive to obtain and only accessible in limited scenarios.
We propose VS3D, a framework for weakly supervised 3D object detection from point clouds without using any ground truth 3D bounding box for training.
arXiv Detail & Related papers (2020-07-28T03:30:11Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
We propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization.
We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.
arXiv Detail & Related papers (2020-07-19T01:15:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.