Superradiance from non-ideal initial states -- a quantum trajectory
approach
- URL: http://arxiv.org/abs/2007.12220v3
- Date: Fri, 12 Mar 2021 22:42:57 GMT
- Title: Superradiance from non-ideal initial states -- a quantum trajectory
approach
- Authors: Sebastian Fuchs, Andr\'as Vukics and Stefan Yoshi Buhmann
- Abstract summary: We investigate alternative initial states inducing a more complex time evolution.
Superposition states of the fully inverted Dicke state and the Dicke ground state with unequal mutual weights are studied.
Superradiance stemming from atoms in clusters separated by more than one wavelength is also studied.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective emission behavior is usually described by the decay dynamics of
the completely symmetric Dicke states. To study a more realistic scenario, we
investigate alternative initial states inducing a more complex time evolution.
Superposition states of the fully inverted Dicke state and the Dicke ground
state with unequal mutual weights are studied as examples as well as
superradiance stemming from atoms in clusters separated by more than one
wavelength. The Monte Carlo wave function method serves as framework to study
the dynamics of quantum states, which is determined by quantum jumps on the one
hand and continuous evolution dynamics on the other hand. We compare this
method with the classical picture of a system of rate equations written for the
diagonal components of the density matrix.
Related papers
- Quenching from superfluid to free bosons in two dimensions: entanglement, symmetries, and quantum Mpemba effect [0.0]
We study the non-equilibrium dynamics of bosons in a two-dimensional optical lattice after a sudden quench from the superfluid phase to the free-boson regime.
arXiv Detail & Related papers (2024-10-18T09:00:01Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Strongly subradiant states in planar atomic arrays [39.58317527488534]
We study collective dipolar oscillations in finite planar arrays of quantum emitters in free space.
We show that the external coupling between the collective states associated with the symmetry of the array and with the quasi-flat dispersion of the corresponding infinite lattice plays a crucial role in the boost of their radiative lifetime.
arXiv Detail & Related papers (2023-10-10T17:06:19Z) - Quasi-equilibrium and quantum correlation in an open spin-pair system [0.0]
Quasi-equilibrium states that can be prepared in solids through Nuclear Magnetic Resonance (NMR) techniques are out-of-equilibrium states that slowly relax towards thermodynamic equilibrium with the lattice.
In this work, we use the quantum discord dynamics as a witness of the quantum correlation in this kind of state.
arXiv Detail & Related papers (2023-03-29T04:33:06Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Relaxation of non-integrable systems and correlation functions [0.0]
We investigate early-time equilibration rates of observables in closed many-body quantum systems.
We find evidence for this coincidence when the initial conditions are sufficiently generic, or typical.
Our findings are confirmed by proving that these different timescales coincide for dynamics generated by Haar-random Hamiltonians.
arXiv Detail & Related papers (2021-12-17T12:34:34Z) - Stroboscopic quantum nondemolition measurements for enhanced
entanglement generation between atomic ensembles [3.0734813171130204]
We develop a measurement operator formalism to handle quantum nondemolition (QND) measurement induced entanglement generation between two atomic gases.
We show several mathematical identities which greatly simplify the state evolution in the projection sequence.
Our formalism does not use the Holstein-Primakoff approximation as is conventionally done, and treats the spins of the atomic gases in an exact way.
arXiv Detail & Related papers (2021-10-18T06:30:20Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.