Inverse-designed photon extractors for optically addressable defect
qubits
- URL: http://arxiv.org/abs/2007.12344v3
- Date: Tue, 15 Dec 2020 17:38:45 GMT
- Title: Inverse-designed photon extractors for optically addressable defect
qubits
- Authors: Srivatsa Chakravarthi, Pengning Chao, Christian Pederson, Sean
Molesky, Andrew Ivanov, Karine Hestroffer, Fariba Hatami, Alejandro W.
Rodriguez and Kai-Mei C. Fu
- Abstract summary: Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
- Score: 48.7576911714538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solid-state defect qubit systems with spin-photon interfaces show great
promise for quantum information and metrology applications. Photon collection
efficiency, however, presents a major challenge for defect qubits in high
refractive index host materials. Inverse-design optimization of photonic
devices enables unprecedented flexibility in tailoring critical parameters of a
spin-photon interface including spectral response, photon polarization and
collection mode. Further, the design process can incorporate additional
constraints, such as fabrication tolerance and material processing limitations.
Here we design and demonstrate a compact hybrid gallium phosphide on diamond
inverse-design planar dielectric structure coupled to single near-surface
nitrogen-vacancy centers formed by implantation and annealing. We observe
device operation near the theoretical limit and measure up to a 14-fold
broadband enhancement in photon extraction efficiency. We expect that such
inverse-designed devices will enable realization of scalable arrays of
single-photon emitters, rapid characterization of new quantum emitters, sensing
and efficient heralded entanglement schemes.
Related papers
- Optical single-shot readout of spin qubits in silicon [41.94295877935867]
silicon nanofabrication offers unique advantages for integration and up-scaling.
Small spin-qubit registers have exceeded error-correction thresholds, their connection to large quantum computers is an outstanding challenge.
We implement such an efficient spin-photon interface based on erbium dopants in a nanophotonic resonator.
arXiv Detail & Related papers (2024-05-08T18:30:21Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Fabrication of Sawfish photonic crystal cavities in bulk diamond [0.0]
"Sawfish" cavities are proposed to enhance the emission rate by a factor of 46 and couple photons into a single-mode fiber with an efficiency of 88%.
The presented process allows for the fabrication of fully suspended devices with a total length of 20.5 $mu$m and features size as small as 40 nm.
arXiv Detail & Related papers (2023-11-07T00:05:46Z) - On-demand indistinguishable and entangled photons using tailored cavity
designs [0.0]
We focus on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability.
We demonstrate that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement.
We report non-trivial dependencies on system parameters and use the predictive power of our combined theoretical approach to determine the optimal range of Purcell enhancement.
arXiv Detail & Related papers (2023-03-24T09:26:03Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - 'Sawfish' Photonic Crystal Cavity for Near-Unity Emitter-to-Fiber
Interfacing in Quantum Network Applications [0.0]
We develop a waveguide-integrated 'Sawfish' photonic crystal cavity and use finite element simulations to demonstrate that our system transfers, with 97.4% efficiency, the zero-phonon line emission of a negatively-charged tin vacancy center in diamond adiabatically to a single-mode fiber.
Our corrugation-based design proves robust under state-of-the-art nanofabrication parameters, maintaining an emitter-to-fiber coupling efficiency of 88.6%.
arXiv Detail & Related papers (2022-10-10T14:00:39Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - The Truncated Metallo-dielectric Omnidirectional Reflector: Collecting
Single Photons in the Fundamental Gaussian Mode with 95% Efficiency [4.127645555053321]
We propose a novel antenna structure which funnels single photons from a single emitter into a low-divergence fundamental Gaussian mode.
Our device relies on the concept of creating an omnidirectional photonic bandgap to inhibit unwanted large-angle emission and to enhance small-angle defect-guided-mode emission.
arXiv Detail & Related papers (2020-08-05T10:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.