Virtual Multi-view Fusion for 3D Semantic Segmentation
- URL: http://arxiv.org/abs/2007.13138v1
- Date: Sun, 26 Jul 2020 14:46:55 GMT
- Title: Virtual Multi-view Fusion for 3D Semantic Segmentation
- Authors: Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian
Brewington, Thomas Funkhouser, Caroline Pantofaru
- Abstract summary: We show that our virtual views enable more effective training of 2D semantic segmentation networks than previous multiview approaches.
When the 2D per pixel predictions are aggregated on 3D surfaces, our virtual multiview fusion method is able to achieve significantly better 3D semantic segmentation results.
- Score: 11.259694096475766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of 3D meshes is an important problem for 3D scene
understanding. In this paper we revisit the classic multiview representation of
3D meshes and study several techniques that make them effective for 3D semantic
segmentation of meshes. Given a 3D mesh reconstructed from RGBD sensors, our
method effectively chooses different virtual views of the 3D mesh and renders
multiple 2D channels for training an effective 2D semantic segmentation model.
Features from multiple per view predictions are finally fused on 3D mesh
vertices to predict mesh semantic segmentation labels. Using the large scale
indoor 3D semantic segmentation benchmark of ScanNet, we show that our virtual
views enable more effective training of 2D semantic segmentation networks than
previous multiview approaches. When the 2D per pixel predictions are aggregated
on 3D surfaces, our virtual multiview fusion method is able to achieve
significantly better 3D semantic segmentation results compared to all prior
multiview approaches and competitive with recent 3D convolution approaches.
Related papers
- SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
This paper addresses the challenge of 3D instance segmentation by simultaneously leveraging 3D geometric and multi-view image information.
We introduce a novel 3D-to-2D query framework to effectively exploit 2D segmentation models for 3D instance segmentation.
Our method achieves robust segmentation performance and can generalize across different types of scenes.
arXiv Detail & Related papers (2023-12-13T18:59:58Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - MVTN: Learning Multi-View Transformations for 3D Understanding [60.15214023270087]
We introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition.
MVTN can be trained end-to-end with any multi-view network for 3D shape recognition.
Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks.
arXiv Detail & Related papers (2022-12-27T12:09:16Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.
For the unlabeled data, we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape.
For the labeled data, we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.
arXiv Detail & Related papers (2022-04-19T11:48:24Z) - Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic
Segmentation [3.5939555573102853]
Recent works on 3D semantic segmentation propose to exploit the synergy between images and point clouds by processing each modality with a dedicated network.
We propose an end-to-end trainable multi-view aggregation model leveraging the viewing conditions of 3D points to merge features from images taken at arbitrary positions.
Our method can combine standard 2D and 3D networks and outperforms both 3D models operating on colorized point clouds and hybrid 2D/3D networks.
arXiv Detail & Related papers (2022-04-15T17:10:48Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
Many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data.
We propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions.
We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance.
arXiv Detail & Related papers (2021-07-08T17:55:01Z) - 3D Crowd Counting via Geometric Attention-guided Multi-View Fusion [50.520192402702015]
We propose to solve the multi-view crowd counting task through 3D feature fusion with 3D scene-level density maps.
Compared to 2D fusion, the 3D fusion extracts more information of the people along the z-dimension (height), which helps to address the scale variations across multiple views.
The 3D density maps still preserve the 2D density maps property that the sum is the count, while also providing 3D information about the crowd density.
arXiv Detail & Related papers (2020-03-18T11:35:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.