Associative3D: Volumetric Reconstruction from Sparse Views
- URL: http://arxiv.org/abs/2007.13727v1
- Date: Mon, 27 Jul 2020 17:58:53 GMT
- Title: Associative3D: Volumetric Reconstruction from Sparse Views
- Authors: Shengyi Qian, Linyi Jin, David F. Fouhey
- Abstract summary: This paper studies the problem of 3D volumetric reconstruction from two views of a scene with an unknown camera.
We propose a new approach that estimates reconstructions, distributions over the camera/object and camera/camera transformations.
We train and test our approach on a dataset of indoor scenes, and rigorously evaluate the merits of our joint reasoning approach.
- Score: 17.5320459412718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the problem of 3D volumetric reconstruction from two views
of a scene with an unknown camera. While seemingly easy for humans, this
problem poses many challenges for computers since it requires simultaneously
reconstructing objects in the two views while also figuring out their
relationship. We propose a new approach that estimates reconstructions,
distributions over the camera/object and camera/camera transformations, as well
as an inter-view object affinity matrix. This information is then jointly
reasoned over to produce the most likely explanation of the scene. We train and
test our approach on a dataset of indoor scenes, and rigorously evaluate the
merits of our joint reasoning approach. Our experiments show that it is able to
recover reasonable scenes from sparse views, while the problem is still
challenging. Project site: https://jasonqsy.github.io/Associative3D
Related papers
- ObjectCarver: Semi-automatic segmentation, reconstruction and separation of 3D objects [44.38881095466177]
Implicit neural fields have made remarkable progress in reconstructing 3D surfaces from multiple images.
Previous work has attempted to tackle this problem by introducing a framework to train separate signed distance fields.
We introduce our method, ObjectCarver, to tackle the problem of object separation from just click input in a single view.
arXiv Detail & Related papers (2024-07-26T22:13:20Z) - Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
We present Total-Decom, a novel method for decomposed 3D reconstruction with minimal human interaction.
Our approach seamlessly integrates the Segment Anything Model (SAM) with hybrid implicit-explicit neural surface representations and a mesh-based region-growing technique for accurate 3D object decomposition.
We extensively evaluate our method on benchmark datasets and demonstrate its potential for downstream applications, such as animation and scene editing.
arXiv Detail & Related papers (2024-03-28T11:12:33Z) - DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
We introduce DUSt3R, a novel paradigm for Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections.
We show that this formulation smoothly unifies the monocular and binocular reconstruction cases.
Our formulation directly provides a 3D model of the scene as well as depth information, but interestingly, we can seamlessly recover from it, pixel matches, relative and absolute camera.
arXiv Detail & Related papers (2023-12-21T18:52:14Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views.
Our framework iteratively adds new superquadrics wherever the reconstruction error is high.
It provides consistently more accurate 3D reconstructions, even from images in the wild.
arXiv Detail & Related papers (2023-09-05T10:21:37Z) - Total-Recon: Deformable Scene Reconstruction for Embodied View Synthesis [76.72505510632904]
We present Total-Recon, the first method to reconstruct deformable scenes from long monocular RGBD videos.
Our method hierarchically decomposes the scene into the background and objects, whose motion is decomposed into root-body motion and local articulations.
arXiv Detail & Related papers (2023-04-24T17:59:52Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
This work explores reconstructing general real-world objects from a few images without known camera poses or object categories.
The crux of our work is solving two fundamental 3D vision problems -- shape reconstruction and pose estimation.
Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence.
arXiv Detail & Related papers (2022-12-08T18:59:02Z) - State of the Art in Dense Monocular Non-Rigid 3D Reconstruction [100.9586977875698]
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics.
This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views.
arXiv Detail & Related papers (2022-10-27T17:59:53Z) - Coherent Reconstruction of Multiple Humans from a Single Image [68.3319089392548]
In this work, we address the problem of multi-person 3D pose estimation from a single image.
A typical regression approach in the top-down setting of this problem would first detect all humans and then reconstruct each one of them independently.
Our goal is to train a single network that learns to avoid these problems and generate a coherent 3D reconstruction of all the humans in the scene.
arXiv Detail & Related papers (2020-06-15T17:51:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.