Linear semi-infinite programming approach for entanglement
quantification
- URL: http://arxiv.org/abs/2007.13818v1
- Date: Mon, 27 Jul 2020 19:12:29 GMT
- Title: Linear semi-infinite programming approach for entanglement
quantification
- Authors: Thiago Mureebe Carrijo, Wesley Bueno Cardoso, and Ardiley Torres
Avelar
- Abstract summary: We show the absence of a duality gap between primal and dual problems, even if the entanglement quantifier is not continuous.
We implement a central cutting-plane algorithm for LSIP to quantify entanglement between three qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the dual problem of the convex roof construction by identifying it
as a linear semi-infinite programming (LSIP) problem. Using the LSIP theory, we
show the absence of a duality gap between primal and dual problems, even if the
entanglement quantifier is not continuous, and prove that the set of optimal
solutions is non-empty and bounded. In addition, we implement a central
cutting-plane algorithm for LSIP to quantify entanglement between three qubits.
The algorithm has global convergence property and gives lower bounds on the
entanglement measure for non-optimal feasible points. As an application, we use
the algorithm for calculating the convex roof of the three-tangle and
$\pi$-tangle measures for families of states with low and high ranks. As the
$\pi$-tangle measure quantifies the entanglement of W states, we apply the
values of the two quantifiers to distinguish between the two different types of
genuine three-qubit entanglement.
Related papers
- Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine
Constraints [21.38692458445459]
We study the problem of distributed multi-agent Bayesian optimization with both coupled black-box constraints and known affine constraints.
A primal-dual distributed algorithm is proposed that achieves similar regret/violation bounds as those in the single-agent case.
arXiv Detail & Related papers (2023-10-02T08:07:36Z) - Reduced Contraction Costs of Corner-Transfer Methods for PEPS [0.0]
We propose a pair of approximations that allows the leading order computational cost of contracting an infinite projected entangled-pair state to be reduced.
The improvement in computational cost enables us to perform large bond dimension calculations, extending its potential to solve challenging problems.
arXiv Detail & Related papers (2023-06-14T02:54:12Z) - A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning [9.628032156001073]
We propose two policy Newton algorithms that incorporate cubic regularization.
Both algorithms employ the likelihood ratio method to form estimates of the gradient and Hessian of the value function.
In particular, the sample complexity of our algorithms to find an $epsilon$-SOSP is $O(epsilon-3.5)$, which is an improvement over the state-of-the-art sample complexity of $O(epsilon-4.5)$.
arXiv Detail & Related papers (2023-04-21T13:43:06Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Inexact and Stochastic Generalized Conditional Gradient with Augmented
Lagrangian and Proximal Step [2.0196229393131726]
We analyze inexact and versions of the CGALP algorithm developed in the authors' previous paper.
This allows one to compute some gradients, terms, and/or linear minimization oracles in an inexact fashion.
We show convergence of the Lagrangian to an optimum and feasibility of the affine constraint.
arXiv Detail & Related papers (2020-05-11T14:52:16Z) - Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms [21.904012114713428]
We consider the sum of three convex functions, where the first one F is smooth, the second one is nonsmooth and proximable.
This template problem has many applications, for instance, in image processing and machine learning.
We propose a new primal-dual algorithm, which we call PDDY, for this problem.
arXiv Detail & Related papers (2020-04-03T10:48:01Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.