Spectral Superresolution of Multispectral Imagery with Joint Sparse and
Low-Rank Learning
- URL: http://arxiv.org/abs/2007.14006v1
- Date: Tue, 28 Jul 2020 06:08:44 GMT
- Title: Spectral Superresolution of Multispectral Imagery with Joint Sparse and
Low-Rank Learning
- Authors: Lianru Gao and Danfeng Hong and Jing Yao and Bing Zhang and Paolo
Gamba and Jocelyn Chanussot
- Abstract summary: spectral superresolution (SSR) of MS imagery is challenging and less investigated due to its high ill-posedness in inverse imaging.
We develop a simple but effective method, called joint sparse and low-rank learning (J-SLoL), to spectrally enhance MS images by jointly learning low-rank HS-MS dictionary pairs from overlapped regions.
- Score: 29.834065415830764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive attention has been widely paid to enhance the spatial resolution of
hyperspectral (HS) images with the aid of multispectral (MS) images in remote
sensing. However, the ability in the fusion of HS and MS images remains to be
improved, particularly in large-scale scenes, due to the limited acquisition of
HS images. Alternatively, we super-resolve MS images in the spectral domain by
the means of partially overlapped HS images, yielding a novel and promising
topic: spectral superresolution (SSR) of MS imagery. This is challenging and
less investigated task due to its high ill-posedness in inverse imaging. To
this end, we develop a simple but effective method, called joint sparse and
low-rank learning (J-SLoL), to spectrally enhance MS images by jointly learning
low-rank HS-MS dictionary pairs from overlapped regions. J-SLoL infers and
recovers the unknown hyperspectral signals over a larger coverage by sparse
coding on the learned dictionary pair. Furthermore, we validate the SSR
performance on three HS-MS datasets (two for classification and one for
unmixing) in terms of reconstruction, classification, and unmixing by comparing
with several existing state-of-the-art baselines, showing the effectiveness and
superiority of the proposed J-SLoL algorithm. Furthermore, the codes and
datasets will be available at:
https://github.com/danfenghong/IEEE\_TGRS\_J-SLoL, contributing to the RS
community.
Related papers
- Hyperspectral and Multispectral Image Fusion Using the Conditional
Denoising Diffusion Probabilistic Model [18.915369996829984]
We propose a deep fusion method based on the conditional denoising diffusion probabilistic model, called DDPM-Fus.
Experiments conducted on one indoor and two remote sensing datasets show the superiority of the proposed model when compared with other advanced deep learningbased fusion methods.
arXiv Detail & Related papers (2023-07-07T07:08:52Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features.
We propose several approaches to HSI segmentation based on M-GSP feature extraction.
Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.
arXiv Detail & Related papers (2021-11-29T23:28:18Z) - SSCAN: A Spatial-spectral Cross Attention Network for Hyperspectral
Image Denoising [12.873607414761093]
We propose a novel HSI denoising network, termed SSCAN, that combines group convolutions and attention modules.
We propose a spectral-spatial attention block (SSAB) to exploit the spatial and spectral information in hyperspectral images in an effective manner.
The experimental results indicate that the proposed SSCAN outperforms several state-of-the-art HSI denoising algorithms.
arXiv Detail & Related papers (2021-05-23T14:36:17Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.