Optimization of XNOR Convolution for Binary Convolutional Neural
Networks on GPU
- URL: http://arxiv.org/abs/2007.14178v1
- Date: Tue, 28 Jul 2020 13:01:17 GMT
- Title: Optimization of XNOR Convolution for Binary Convolutional Neural
Networks on GPU
- Authors: Mete Can Kaya, Alperen \.Inci, Alptekin Temizel
- Abstract summary: We propose an implementation of binary convolutional network inference on GPU.
Experimental results show that using GPU can provide a speed-up of up to $42.61times$ with a kernel size of $3times3$.
- Score: 2.578242050187029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary convolutional networks have lower computational load and lower memory
foot-print compared to their full-precision counterparts. So, they are a
feasible alternative for the deployment of computer vision applications on
limited capacity embedded devices. Once trained on less resource-constrained
computational environments, they can be deployed for real-time inference on
such devices. In this study, we propose an implementation of binary
convolutional network inference on GPU by focusing on optimization of XNOR
convolution. Experimental results show that using GPU can provide a speed-up of
up to $42.61\times$ with a kernel size of $3\times3$. The implementation is
publicly available at
https://github.com/metcan/Binary-Convolutional-Neural-Network-Inference-on-GPU
Related papers
- Enhancing MOTION2NX for Efficient, Scalable and Secure Image Inference using Convolutional Neural Networks [4.407841002228536]
We use the ABY2.0 SMPC protocol implemented on the C++ based MOTION2NX framework for secure convolutional neural network (CNN) inference application with semi-honest security.
We also present a novel splitting algorithm that divides the computations at each CNN layer into multiple chunks.
arXiv Detail & Related papers (2024-08-29T09:50:21Z) - Weight Block Sparsity: Training, Compilation, and AI Engine Accelerators [0.0]
Deep Neural Networks (DNNs) are being developed, trained, and utilized, putting a strain on both advanced and limited devices.
Our solution is to implement em weight block sparsity, which is a structured sparsity that is friendly to hardware.
We will present performance estimates using accurate and complete code generation for AIE2 configuration sets (AMD Versal FPGAs) with Resnet50, Inception V3, and VGG16.
arXiv Detail & Related papers (2024-07-12T17:37:49Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
We present a versatile new input encoding that permits the use of a smaller network without sacrificing quality.
A small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through a gradient descent.
We achieve a combined speed of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds.
arXiv Detail & Related papers (2022-01-16T07:22:47Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Content-Aware Convolutional Neural Networks [98.97634685964819]
Convolutional Neural Networks (CNNs) have achieved great success due to the powerful feature learning ability of convolution layers.
We propose a Content-aware Convolution (CAC) that automatically detects the smooth windows and applies a 1x1 convolutional kernel to replace the original large kernel.
arXiv Detail & Related papers (2021-06-30T03:54:35Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
We introduce our efficient implementation of a generic 1D convolution layer covering a wide range of parameters.
It is optimized for x86 CPU architectures, in particular, for architectures containing Intel AVX-512 and AVX-512 BFloat16 instructions.
We demonstrate the performance of our optimized 1D convolution layer by utilizing it in the end-to-end neural network training with real genomics datasets.
arXiv Detail & Related papers (2021-04-16T09:54:30Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - At-Scale Sparse Deep Neural Network Inference with Efficient GPU
Implementation [24.824295164938604]
This paper presents GPU performance optimization and scaling results for inference models of the Sparse Deep Neural Network Challenge 2020.
Sparse deep neural networks (SpDNN) have shown promise for reining in the memory footprint of large neural networks.
This work presents optimized sparse matrix multiplication kernels fused with the ReLU function.
arXiv Detail & Related papers (2020-07-28T12:09:43Z) - Efficient Neural Network Deployment for Microcontroller [0.0]
This paper is going to explore and generalize convolution neural network deployment for microcontrollers.
The memory savings and performance will be compared with CMSIS-NN framework developed for ARM Cortex-M CPUs.
The final purpose is to develop a tool consuming PyTorch model with trained network weights, and it turns into an optimized inference engine in C/C++ for low memory(kilobyte level) and limited computing capable microcontrollers.
arXiv Detail & Related papers (2020-07-02T19:21:05Z) - Performance Aware Convolutional Neural Network Channel Pruning for
Embedded GPUs [6.035819238203187]
We show that a reduction in the number of convolutional channels, pruning 12% of the initial size, is in some cases detrimental to performance.
We also find examples where performance-aware pruning achieves the intended results, with performance speedups of 3x with cuDNN and above 10x with Arm Compute Library and TVM.
arXiv Detail & Related papers (2020-02-20T12:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.