Theory of Deep Convolutional Neural Networks II: Spherical Analysis
- URL: http://arxiv.org/abs/2007.14285v1
- Date: Tue, 28 Jul 2020 14:54:30 GMT
- Title: Theory of Deep Convolutional Neural Networks II: Spherical Analysis
- Authors: Zhiying Fang, Han Feng, Shuo Huang, Ding-Xuan Zhou
- Abstract summary: We consider a family of deep convolutional neural networks applied to approximate functions on the unit sphere $mathbbSd-1$ of $mathbbRd$.
Our analysis presents rates of uniform approximation when the approximated function lies in the Sobolev space $Wr_infty (mathbbSd-1)$ with $r>0$ or takes an additive ridge form.
- Score: 9.099589602551573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based on deep neural networks of various structures and
architectures has been powerful in many practical applications, but it lacks
enough theoretical verifications. In this paper, we consider a family of deep
convolutional neural networks applied to approximate functions on the unit
sphere $\mathbb{S}^{d-1}$ of $\mathbb{R}^d$. Our analysis presents rates of
uniform approximation when the approximated function lies in the Sobolev space
$W^r_\infty (\mathbb{S}^{d-1})$ with $r>0$ or takes an additive ridge form. Our
work verifies theoretically the modelling and approximation ability of deep
convolutional neural networks followed by downsampling and one fully connected
layer or two. The key idea of our spherical analysis is to use the inner
product form of the reproducing kernels of the spaces of spherical harmonics
and then to apply convolutional factorizations of filters to realize the
generated linear features.
Related papers
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - Wide Neural Networks as Gaussian Processes: Lessons from Deep
Equilibrium Models [16.07760622196666]
We study the deep equilibrium model (DEQ), an infinite-depth neural network with shared weight matrices across layers.
Our analysis reveals that as the width of DEQ layers approaches infinity, it converges to a Gaussian process.
Remarkably, this convergence holds even when the limits of depth and width are interchanged.
arXiv Detail & Related papers (2023-10-16T19:00:43Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Understanding Layer-wise Contributions in Deep Neural Networks through
Spectral Analysis [6.0158981171030685]
We analyze the layer-wise spectral bias of Deep Neural Networks and relate it to the contributions of different layers in the reduction of error for a given target function.
We provide empirical results validating our theory in high dimensional datasets for Deep Neural Networks.
arXiv Detail & Related papers (2021-11-06T22:49:46Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Theory of Deep Convolutional Neural Networks III: Approximating Radial
Functions [7.943024117353317]
We consider a family of deep neural networks consisting of two groups of convolutional layers, a down operator, and a fully connected layer.
The network structure depends on two structural parameters which determine the numbers of convolutional layers and the width of the fully connected layer.
arXiv Detail & Related papers (2021-07-02T08:22:12Z) - Deep neural network approximation of analytic functions [91.3755431537592]
entropy bound for the spaces of neural networks with piecewise linear activation functions.
We derive an oracle inequality for the expected error of the considered penalized deep neural network estimators.
arXiv Detail & Related papers (2021-04-05T18:02:04Z) - Large-width functional asymptotics for deep Gaussian neural networks [2.7561479348365734]
We consider fully connected feed-forward deep neural networks where weights and biases are independent and identically distributed according to Gaussian distributions.
Our results contribute to recent theoretical studies on the interplay between infinitely wide deep neural networks and processes.
arXiv Detail & Related papers (2021-02-20T10:14:37Z) - Deep Networks and the Multiple Manifold Problem [15.144495799445824]
We study the multiple manifold problem, a binary classification task modeled on applications in machine vision, in which a deep fully-connected neural network is trained to separate two low-dimensional submanifolds of the unit sphere.
We prove for a simple manifold configuration that when the network depth $L$ is large relative to certain geometric and statistical properties of the data, the network width grows as a sufficiently large in $L$.
Our analysis demonstrates concrete benefits of depth and width in the context of a practically-motivated model problem.
arXiv Detail & Related papers (2020-08-25T19:20:00Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.