Few-Shot Keyword Spotting With Prototypical Networks
- URL: http://arxiv.org/abs/2007.14463v1
- Date: Sat, 25 Jul 2020 20:17:56 GMT
- Title: Few-Shot Keyword Spotting With Prototypical Networks
- Authors: Archit Parnami, Minwoo Lee
- Abstract summary: keyword spotting has been widely used in many voice interfaces such as Amazon's Alexa and Google Home.
We first formulate this problem as a few-shot keyword spotting and approach it using metric learning.
We then propose a solution to the prototypical few-shot keyword spotting problem using temporal and dilated convolutions on networks.
- Score: 3.6930948691311016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognizing a particular command or a keyword, keyword spotting has been
widely used in many voice interfaces such as Amazon's Alexa and Google Home. In
order to recognize a set of keywords, most of the recent deep learning based
approaches use a neural network trained with a large number of samples to
identify certain pre-defined keywords. This restricts the system from
recognizing new, user-defined keywords. Therefore, we first formulate this
problem as a few-shot keyword spotting and approach it using metric learning.
To enable this research, we also synthesize and publish a Few-shot Google
Speech Commands dataset. We then propose a solution to the few-shot keyword
spotting problem using temporal and dilated convolutions on prototypical
networks. Our comparative experimental results demonstrate keyword spotting of
new keywords using just a small number of samples.
Related papers
- Open-vocabulary Keyword-spotting with Adaptive Instance Normalization [18.250276540068047]
We propose AdaKWS, a novel method for keyword spotting in which a text encoder is trained to output keyword-conditioned normalization parameters.
We show significant improvements over recent keyword spotting and ASR baselines.
arXiv Detail & Related papers (2023-09-13T13:49:42Z) - Towards Open Vocabulary Learning: A Survey [146.90188069113213]
Deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection.
Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training.
This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2023-06-28T02:33:06Z) - To Wake-up or Not to Wake-up: Reducing Keyword False Alarm by Successive
Refinement [58.96644066571205]
We show that existing deep keyword spotting mechanisms can be improved by Successive Refinement.
We show across multiple models with size ranging from 13K parameters to 2.41M parameters, the successive refinement technique reduces FA by up to a factor of 8.
Our proposed approach is "plug-and-play" and can be applied to any deep keyword spotting model.
arXiv Detail & Related papers (2023-04-06T23:49:29Z) - Dummy Prototypical Networks for Few-Shot Open-Set Keyword Spotting [6.4423565043274795]
We tackle few-shot open-set keyword spotting with a new benchmark setting, named splitGSC.
We propose episode-known dummy prototypes based on metric learning to detect an open-set better and introduce a simple and powerful approach, Dummy Prototypical Networks (D-ProtoNets)
We also verify our method on a standard benchmark, miniImageNet, and D-ProtoNets shows the state-of-the-art open-set detection rate in FSOSR.
arXiv Detail & Related papers (2022-06-28T01:56:24Z) - On the Efficiency of Integrating Self-supervised Learning and
Meta-learning for User-defined Few-shot Keyword Spotting [51.41426141283203]
User-defined keyword spotting is a task to detect new spoken terms defined by users.
Previous works try to incorporate self-supervised learning models or apply meta-learning algorithms.
Our result shows that HuBERT combined with Matching network achieves the best result.
arXiv Detail & Related papers (2022-04-01T10:59:39Z) - Short-Term Word-Learning in a Dynamically Changing Environment [63.025297637716534]
We show how to supplement an end-to-end ASR system with a word/phrase memory and a mechanism to access this memory to recognize the words and phrases correctly.
We demonstrate significant improvements in the detection rate of new words with only a minor increase in false alarms.
arXiv Detail & Related papers (2022-03-29T10:05:39Z) - Deep Keyphrase Completion [59.0413813332449]
Keyphrase provides accurate information of document content that is highly compact, concise, full of meanings, and widely used for discourse comprehension, organization, and text retrieval.
We propose textitkeyphrase completion (KPC) to generate more keyphrases for document (e.g. scientific publication) taking advantage of document content along with a very limited number of known keyphrases.
We name it textitdeep keyphrase completion (DKPC) since it attempts to capture the deep semantic meaning of the document content together with known keyphrases via a deep learning framework
arXiv Detail & Related papers (2021-10-29T07:15:35Z) - Teaching keyword spotters to spot new keywords with limited examples [6.251896411370577]
We present KeySEM, a speech embedding model pre-trained on the task of recognizing a large number of keywords.
KeySEM is well suited to on-device environments where post-deployment learning and ease of customization are often desirable.
arXiv Detail & Related papers (2021-06-04T12:43:36Z) - Exclusive Hierarchical Decoding for Deep Keyphrase Generation [63.357895318562214]
Keyphrase generation (KG) aims to summarize the main ideas of a document into a set of keyphrases.
Previous work in this setting employs a sequential decoding process to generate keyphrases.
We propose an exclusive hierarchical decoding framework that includes a hierarchical decoding process and either a soft or a hard exclusion mechanism.
arXiv Detail & Related papers (2020-04-18T02:58:00Z) - Small-Footprint Open-Vocabulary Keyword Spotting with Quantized LSTM
Networks [3.8382752162527933]
In this paper, we focus on an open-vocabulary keyword spotting method, allowing the user to define their own keywords without having to retrain the whole model.
We describe the different design choices leading to a fast and small-footprint system, able to run on tiny devices, for any arbitrary set of user-defined keywords.
arXiv Detail & Related papers (2020-02-25T13:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.