Solving Phase Retrieval with a Learned Reference
- URL: http://arxiv.org/abs/2007.14621v1
- Date: Wed, 29 Jul 2020 06:17:25 GMT
- Title: Solving Phase Retrieval with a Learned Reference
- Authors: Rakib Hyder, Zikui Cai, and M. Salman Asif
- Abstract summary: Fourier phase retrieval is a classical problem that deals with the recovery of an image from the amplitude measurements of its Fourier coefficients.
In this paper, we assume that a known (learned) reference is added to the signal before capturing the amplitude measurements.
Our method is inspired by the principle of adding a reference signal in holography.
- Score: 18.76940558836028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fourier phase retrieval is a classical problem that deals with the recovery
of an image from the amplitude measurements of its Fourier coefficients.
Conventional methods solve this problem via iterative (alternating)
minimization by leveraging some prior knowledge about the structure of the
unknown image. The inherent ambiguities about shift and flip in the Fourier
measurements make this problem especially difficult; and most of the existing
methods use several random restarts with different permutations. In this paper,
we assume that a known (learned) reference is added to the signal before
capturing the Fourier amplitude measurements. Our method is inspired by the
principle of adding a reference signal in holography. To recover the signal, we
implement an iterative phase retrieval method as an unrolled network. Then we
use back propagation to learn the reference that provides us the best
reconstruction for a fixed number of phase retrieval iterations. We performed a
number of simulations on a variety of datasets under different conditions and
found that our proposed method for phase retrieval via unrolled network and
learned reference provides near-perfect recovery at fixed (small) computational
cost. We compared our method with standard Fourier phase retrieval methods and
observed significant performance enhancement using the learned reference.
Related papers
- Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
We propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process.
DAPS significantly improves sample quality and stability across multiple image restoration tasks.
For example, we achieve a PSNR of 30.72dB on the FFHQ 256 dataset for phase retrieval, which is an improvement of 9.12dB compared to existing methods.
arXiv Detail & Related papers (2024-07-01T17:59:23Z) - Single-shot Phase Retrieval from a Fractional Fourier Transform
Perspective [12.490990352972695]
We present a novel single-shot phase retrieval paradigm from a fractional Fourier transform perspective.
The intensity measurement in the FrFT domain proves highly effective in alleviating the ambiguities of phase retrieval.
The proposed self-supervised reconstruction approach harnesses the fast discrete algorithm of FrFT alongside untrained neural network priors.
arXiv Detail & Related papers (2023-11-18T03:11:31Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Alternating Phase Langevin Sampling with Implicit Denoiser Priors for
Phase Retrieval [1.7767466724342065]
We present a way leveraging the prior implicitly learned by a denoiser to solve phase retrieval problems by incorporating it in a classical framework.
Compared to performant denoising-based algorithms for phase retrieval, we showcase competitive performance with notable measurements on in-distribution images and notable out-of-distribution images.
arXiv Detail & Related papers (2022-11-02T05:08:50Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - A Closer Look at Reference Learning for Fourier Phase Retrieval [0.966840768820136]
We consider a modified version of the phase retrieval problem, which allows for a reference image to be added onto the image before the Fourier magnitudes are measured.
We propose a simple and efficient to construct reference images that, in some cases, yields reconstructions of comparable quality as approaches that learn references.
arXiv Detail & Related papers (2021-10-26T13:25:36Z) - Non-Iterative Phase Retrieval With Cascaded Neural Networks [0.966840768820136]
We present a deep neural network cascade that reconstructs an image successively on different resolutions from its non-oversampled Fourier magnitude.
We evaluate our method on four different datasets.
arXiv Detail & Related papers (2021-06-18T15:52:12Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
We prove that our quantized RFFs allow a high accuracy approximation of the underlying kernels.
We show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy.
We empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
arXiv Detail & Related papers (2021-06-04T17:24:47Z) - A Fourier-based Framework for Domain Generalization [82.54650565298418]
Domain generalization aims at tackling this problem by learning transferable knowledge from multiple source domains in order to generalize to unseen target domains.
This paper introduces a novel Fourier-based perspective for domain generalization.
Experiments on three benchmarks have demonstrated that the proposed method is able to achieve state-of-the-arts performance for domain generalization.
arXiv Detail & Related papers (2021-05-24T06:50:30Z) - DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase
Retrieval [31.380061715549584]
We propose a novel, unsupervised, feed-forward neural network for Fourier phase retrieval.
Unlike the existing deep learning approaches that use a neural network as a regularization term or an end-to-end blackbox model for supervised training, our algorithm is a feed-forward neural network implementation of PhaseCut algorithm in an unsupervised learning framework.
Our network is composed of two generators: one for the phase estimation using PhaseCut loss, followed by another generator for image reconstruction, all of which are trained simultaneously using a cycleGAN framework without matched data.
arXiv Detail & Related papers (2020-11-20T16:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.