Towards Domain-Specific Characterization of Misinformation
- URL: http://arxiv.org/abs/2007.14806v1
- Date: Wed, 29 Jul 2020 12:46:45 GMT
- Title: Towards Domain-Specific Characterization of Misinformation
- Authors: Fariha Afsana, Muhammad Ashad Kabir, Naeemul Hassan, Manoranjan Paul
- Abstract summary: The rapid dissemination of health misinformation poses an increasing risk to public health.
It is important to acknowledge how the fundamental characteristics of misinformation differ from domain to domain.
This paper presents a pathway towards domain-specific characterization of misinformation.
- Score: 14.136862418249764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid dissemination of health misinformation poses an increasing risk to
public health. To best understand the way of combating health misinformation,
it is important to acknowledge how the fundamental characteristics of
misinformation differ from domain to domain. This paper presents a pathway
towards domain-specific characterization of misinformation so that we can
address the concealed behavior of health misinformation compared to others and
take proper initiative accordingly for combating it. With this aim, we have
mentioned several possible approaches to identify discriminating features of
medical misinformation from other types of misinformation. Thereafter, we
briefly propose a research plan followed by possible challenges to meet up. The
findings of the proposed research idea will provide new directions to the
misinformation research community.
Related papers
- Health Misinformation in Social Networks: A Survey of IT Approaches [2.1440886607229563]
Survey aims at providing a systematic review of related research.
We first present manual and automatic approaches for fact-checking.
We then explore fake news detection methods, using content, propagation features, or source features, as well as mitigation approaches for countering the spread of misinformation.
arXiv Detail & Related papers (2024-10-24T12:00:51Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations.
This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures.
arXiv Detail & Related papers (2024-03-31T12:44:48Z) - Combating Health Misinformation in Social Media: Characterization,
Detection, Intervention, and Open Issues [24.428582199602822]
The rise of various social media platforms also enables the proliferation of online misinformation.
Health misinformation in social media has become an emerging research direction that attracts increasing attention from researchers of different disciplines.
arXiv Detail & Related papers (2022-11-10T01:52:12Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - DISCO: Comprehensive and Explainable Disinformation Detection [71.5283511752544]
We propose a comprehensive and explainable disinformation detection framework called DISCO.
We demonstrate DISCO on a real-world fake news detection task with satisfactory detection accuracy and explanation.
We expect that our demo could pave the way for addressing the limitations of identification, comprehension, and explainability as a whole.
arXiv Detail & Related papers (2022-03-09T18:17:25Z) - Understanding Health Misinformation Transmission: An Interpretable Deep
Learning Approach to Manage Infodemics [6.08461198240039]
This study proposes a novel interpretable deep learning approach, Generative Adversarial Network based Piecewise Wide and Attention Deep Learning (GAN-PiWAD) to predict health misinformation transmission in social media.
We select features according to social exchange theory and evaluate GAN-PiWAD on 4,445 misinformation videos.
Our findings provide direct implications for social media platforms and policymakers to design proactive interventions to identify misinformation, control transmissions, and manage infodemics.
arXiv Detail & Related papers (2020-12-21T15:49:19Z) - Disinformation in the Online Information Ecosystem: Detection,
Mitigation and Challenges [35.0667998623823]
A large fraction of the common public turn to social media platforms for news and even information regarding highly concerning issues such as COVID-19 symptoms.
There is a significant amount of ongoing research in the directions of disinformation detection and mitigation.
We discuss the online disinformation problem, focusing on the recent 'infodemic' in the wake of the coronavirus pandemic.
arXiv Detail & Related papers (2020-10-18T21:44:23Z) - Drink Bleach or Do What Now? Covid-HeRA: A Study of Risk-Informed Health
Decision Making in the Presence of COVID-19 Misinformation [23.449057978351945]
We frame health misinformation as a risk assessment task.
We study the severity of each misinformation story and how readers perceive this severity.
We evaluate several traditional and state-of-the-art models and show there is a significant gap in performance.
arXiv Detail & Related papers (2020-10-17T08:34:57Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.