Comparative study of deep learning methods for the automatic
segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
- URL: http://arxiv.org/abs/2007.15546v4
- Date: Mon, 10 Jan 2022 08:26:14 GMT
- Title: Comparative study of deep learning methods for the automatic
segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
- Authors: Sofie Tilborghs, Ine Dirks, Lucas Fidon, Siri Willems, Tom Eelbode,
Jeroen Bertels, Bart Ilsen, Arne Brys, Adriana Dubbeldam, Nico Buls,
Panagiotis Gonidakis, Sebasti\'an Amador S\'anchez, Annemiek Snoeckx, Paul M.
Parizel, Johan de Mey, Dirk Vandermeulen, Tom Vercauteren, David Robben, Dirk
Smeets, Frederik Maes, Jef Vandemeulebroucke, Paul Suetens
- Abstract summary: There is an increasing number of studies that propose to use deep learning to provide fast and accurate quantification of COVID-19.
The main tasks of interest are the automatic segmentation of lung and lung lesions in chest CT scans of confirmed or suspected COVID-19 patients.
We compare twelve deep learning algorithms using a multi-center dataset, including both open-source and in-house developed algorithms.
- Score: 6.890747388531539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research on COVID-19 suggests that CT imaging provides useful
information to assess disease progression and assist diagnosis, in addition to
help understanding the disease. There is an increasing number of studies that
propose to use deep learning to provide fast and accurate quantification of
COVID-19 using chest CT scans. The main tasks of interest are the automatic
segmentation of lung and lung lesions in chest CT scans of confirmed or
suspected COVID-19 patients. In this study, we compare twelve deep learning
algorithms using a multi-center dataset, including both open-source and
in-house developed algorithms. Results show that ensembling different methods
can boost the overall test set performance for lung segmentation, binary lesion
segmentation and multiclass lesion segmentation, resulting in mean Dice scores
of 0.982, 0.724 and 0.469, respectively. The resulting binary lesions were
segmented with a mean absolute volume error of 91.3 ml. In general, the task of
distinguishing different lesion types was more difficult, with a mean absolute
volume difference of 152 ml and mean Dice scores of 0.369 and 0.523 for
consolidation and ground glass opacity, respectively. All methods perform
binary lesion segmentation with an average volume error that is better than
visual assessment by human raters, suggesting these methods are mature enough
for a large-scale evaluation for use in clinical practice.
Related papers
- CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Automated lung segmentation from CT images of normal and COVID-19
pneumonia patients [0.0]
This study investigates the performance of a deep learning-based model for lung segmentation from CT images for normal and COVID-19 patients.
Chest CT images and corresponding lung masks of 1200 confirmed COVID-19 cases were used for training a residual neural network.
arXiv Detail & Related papers (2021-04-05T17:46:12Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - CT Image Segmentation for Inflamed and Fibrotic Lungs Using a
Multi-Resolution Convolutional Neural Network [6.177921466996229]
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities.
A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network.
The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation.
arXiv Detail & Related papers (2020-10-16T18:25:59Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Machine Learning Automatically Detects COVID-19 using Chest CTs in a
Large Multicenter Cohort [43.99203831722203]
Our retrospective study obtained 2096 chest CTs from 16 institutions.
A metric-based approach for classification of COVID-19 used interpretable features.
A deep learning-based classifier differentiated COVID-19 via 3D features extracted from CT attenuation and probability distribution of airspace opacities.
arXiv Detail & Related papers (2020-06-09T00:40:35Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.