Random Vector Functional Link Networks for Function Approximation on Manifolds
- URL: http://arxiv.org/abs/2007.15776v4
- Date: Mon, 26 Aug 2024 14:43:36 GMT
- Title: Random Vector Functional Link Networks for Function Approximation on Manifolds
- Authors: Deanna Needell, Aaron A. Nelson, Rayan Saab, Palina Salanevich, Olov Schavemaker,
- Abstract summary: We show that single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice.
We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space.
- Score: 8.535815777849786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The learning speed of feed-forward neural networks is notoriously slow and has presented a bottleneck in deep learning applications for several decades. For instance, gradient-based learning algorithms, which are used extensively to train neural networks, tend to work slowly when all of the network parameters must be iteratively tuned. To counter this, both researchers and practitioners have tried introducing randomness to reduce the learning requirement. Based on the original construction of Igelnik and Pao, single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice, but the necessary theoretical justification is lacking. In this paper, we begin to fill this theoretical gap. We provide a (corrected) rigorous proof that the Igelnik and Pao construction is a universal approximator for continuous functions on compact domains, with approximation error decaying asymptotically like $O(1/\sqrt{n})$ for the number $n$ of network nodes. We then extend this result to the non-asymptotic setting, proving that one can achieve any desired approximation error with high probability provided $n$ is sufficiently large. We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space, providing theoretical guarantees in both the asymptotic and non-asymptotic forms. Finally, we illustrate our results on manifolds with numerical experiments.
Related papers
- Multi-layer random features and the approximation power of neural networks [4.178980693837599]
We prove that a reproducing kernel Hilbert space contains only functions that can be approximated by the architecture.
We show that if eigenvalues of the integral operator of the NNGP decay slower than $k-n-frac23$ where $k$ is an order of an eigenvalue, our theorem guarantees a more succinct neural network approximation than Barron's theorem.
arXiv Detail & Related papers (2024-04-26T14:57:56Z) - Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control [0.0]
We show that ReLU networks with randomly generated weights and biases achieve $L_infty$ error of $O(m-1/2)$ with high probability.
We show how the result can be used to get approximations of required accuracy in a model reference adaptive control application.
arXiv Detail & Related papers (2024-03-25T19:39:17Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
We show that a class of variation-constrained neural networks can achieve near-parametric rate $n-1/2+delta$ for an arbitrarily small constant $delta$.
The result indicates that the neural function space needed for approximating smooth functions may not be as large as what is often perceived.
arXiv Detail & Related papers (2021-06-22T21:28:00Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - How Powerful are Shallow Neural Networks with Bandlimited Random
Weights? [25.102870584507244]
We investigate the expressive power of limited depth-2 band random neural networks.
A random net is a neural network where the hidden layer parameters are frozen with random bandwidth.
arXiv Detail & Related papers (2020-08-19T13:26:12Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.