Adversarial Bipartite Graph Learning for Video Domain Adaptation
- URL: http://arxiv.org/abs/2007.15829v1
- Date: Fri, 31 Jul 2020 03:48:41 GMT
- Title: Adversarial Bipartite Graph Learning for Video Domain Adaptation
- Authors: Yadan Luo, Zi Huang, Zijian Wang, Zheng Zhang, Mahsa Baktashmotlagh
- Abstract summary: Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area.
Recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations are not highly effective on the videos.
This paper proposes an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions.
- Score: 50.68420708387015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation techniques, which focus on adapting models between
distributionally different domains, are rarely explored in the video
recognition area due to the significant spatial and temporal shifts across the
source (i.e. training) and target (i.e. test) domains. As such, recent works on
visual domain adaptation which leverage adversarial learning to unify the
source and target video representations and strengthen the feature
transferability are not highly effective on the videos. To overcome this
limitation, in this paper, we learn a domain-agnostic video classifier instead
of learning domain-invariant representations, and propose an Adversarial
Bipartite Graph (ABG) learning framework which directly models the
source-target interactions with a network topology of the bipartite graph.
Specifically, the source and target frames are sampled as heterogeneous
vertexes while the edges connecting two types of nodes measure the affinity
among them. Through message-passing, each vertex aggregates the features from
its heterogeneous neighbors, forcing the features coming from the same class to
be mixed evenly. Explicitly exposing the video classifier to such cross-domain
representations at the training and test stages makes our model less biased to
the labeled source data, which in-turn results in achieving a better
generalization on the target domain. To further enhance the model capacity and
testify the robustness of the proposed architecture on difficult transfer
tasks, we extend our model to work in a semi-supervised setting using an
additional video-level bipartite graph. Extensive experiments conducted on four
benchmarks evidence the effectiveness of the proposed approach over the SOTA
methods on the task of video recognition.
Related papers
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
Unsupervised domain adaptive segmentation aims to improve the segmentation accuracy of models on target domains without relying on labeled data from those domains.
It seeks to align the feature representations of the source domain (where labeled data is available) and the target domain (where only unlabeled data is present)
arXiv Detail & Related papers (2024-07-24T08:53:29Z) - Adversarial Augmentation Training Makes Action Recognition Models More
Robust to Realistic Video Distribution Shifts [13.752169303624147]
Action recognition models often lack robustness when faced with natural distribution shifts between training and test data.
We propose two novel evaluation methods to assess model resilience to such distribution disparity.
We experimentally demonstrate the superior performance of the proposed adversarial augmentation approach over baselines across three state-of-the-art action recognition models.
arXiv Detail & Related papers (2024-01-21T05:50:39Z) - Domain Adaptive Graph Classification [0.0]
We introduce the Dual Adversarial Graph Representation Learning (DAGRL), which explore the graph topology from dual branches and mitigate domain discrepancies via dual adversarial learning.
Our approach incorporates adaptive perturbations into the dual branches, which align the source and target distribution to address domain discrepancies.
arXiv Detail & Related papers (2023-12-21T02:37:56Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Towards Adaptive Semantic Segmentation by Progressive Feature Refinement [16.40758125170239]
We propose an innovative progressive feature refinement framework, along with domain adversarial learning to boost the transferability of segmentation networks.
As a result, the segmentation models trained with source domain images can be transferred to a target domain without significant performance degradation.
arXiv Detail & Related papers (2020-09-30T04:17:48Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Unsupervised Learning of Video Representations via Dense Trajectory
Clustering [86.45054867170795]
This paper addresses the task of unsupervised learning of representations for action recognition in videos.
We first propose to adapt two top performing objectives in this class - instance recognition and local aggregation.
We observe promising performance, but qualitative analysis shows that the learned representations fail to capture motion patterns.
arXiv Detail & Related papers (2020-06-28T22:23:03Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
Current adversarial adaptation methods attempt to align the cross-domain features.
Two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain.
We propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures.
arXiv Detail & Related papers (2020-02-06T22:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.