Few-mode Field Quantization of Arbitrary Electromagnetic Spectral
Densities
- URL: http://arxiv.org/abs/2008.00349v1
- Date: Sat, 1 Aug 2020 21:55:19 GMT
- Title: Few-mode Field Quantization of Arbitrary Electromagnetic Spectral
Densities
- Authors: Ivan Medina, Francisco J. Garc\'ia-Vidal, Antonio I.
Fern\'andez-Dom\'inguez, Johannes Feist
- Abstract summary: We develop a framework that provides a few-mode master equation description of the interaction between a single quantum emitter and an arbitrary electromagnetic environment.
We illustrate the power and validity of our approach by describing the population and electric field dynamics in the spontaneous decay of an emitter placed in a complex hybrid plasmonic-photonic structure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a framework that provides a few-mode master equation description
of the interaction between a single quantum emitter and an arbitrary
electromagnetic environment. The field quantization requires only the fitting
of the spectral density, obtained through classical electromagnetic
simulations, to a model system involving a small number of lossy and
interacting modes. We illustrate the power and validity of our approach by
describing the population and electric field dynamics in the spontaneous decay
of an emitter placed in a complex hybrid plasmonic-photonic structure.
Related papers
- Hierarchy of approximations for describing quantum light from high-harmonic generation: A Fermi-Hubbard model study [0.0]
We present a hierarchy of approximations for the equations of motion for the photonic state.
We find that for the typical experimental situation of weak quantized-light-matter-coupling constant and at intensities well below the damage threshold, an explicit expression for the generated quantum light captures the high-harmonic spectrum quantitatively.
arXiv Detail & Related papers (2024-10-25T12:59:29Z) - Electron-assisted manipulation of polaritonic light-matter states [0.0]
We investigate strong light-matter coupling through monochromatic and modulated electron wavepackets.
In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter.
We show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets.
arXiv Detail & Related papers (2023-12-11T16:28:32Z) - Quantum Electrodynamics with Time-varying Dielectrics [0.0]
We present a framework for quantization of electromagnetic field in the presence of dielectric media with time-varying optical properties.
We obtain the normal modes of the coupled light-matter degrees of freedom, showing that the corresponding creation and operators obey equal-time canonical commutation relations.
Our results are pertinent to time-varying boundary conditions realizable across a wide range of state-of-the-art physical platforms and timescales.
arXiv Detail & Related papers (2023-10-21T00:58:34Z) - Perspective on real-space nanophotonic field manipulation using
non-perturbative light-matter coupling [0.0]
We develop a theory describing multi-mode light-matter coupling in systems of reduced dimensionality.
We show how the interference between different photonic resonances can modify the real-space shape of the electromagnetic field associated with each polariton mode.
arXiv Detail & Related papers (2022-07-24T08:29:50Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Few-mode Field Quantization for Multiple Emitters [0.0]
We introduce an approach that permits a quantized description of the full EM field through a "minimal" number of discrete modes.
We show that excitation transfer between the emitters is highly sensitive to the properties of the hybrid photonic-plasmonic modes.
arXiv Detail & Related papers (2021-12-20T15:01:08Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.