Looking in the Right place for Anomalies: Explainable AI through
Automatic Location Learning
- URL: http://arxiv.org/abs/2008.00363v1
- Date: Sun, 2 Aug 2020 00:02:37 GMT
- Title: Looking in the Right place for Anomalies: Explainable AI through
Automatic Location Learning
- Authors: Satyananda Kashyap, Alexandros Karargyris, Joy Wu, Yaniv Gur, Arjun
Sharma, Ken C. L. Wong, Mehdi Moradi, Tanveer Syeda-Mahmood
- Abstract summary: We develop an approach to explainable AI in which the anomaly is assured to be overlapping the expected location when present.
Use of this expected location to bias the subsequent attention-guided inference network based on ResNet101 results in the isolation of the anomaly at the expected location when present.
- Score: 51.72146225623288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has now become the de facto approach to the recognition of
anomalies in medical imaging. Their 'black box' way of classifying medical
images into anomaly labels poses problems for their acceptance, particularly
with clinicians. Current explainable AI methods offer justifications through
visualizations such as heat maps but cannot guarantee that the network is
focusing on the relevant image region fully containing the anomaly. In this
paper, we develop an approach to explainable AI in which the anomaly is assured
to be overlapping the expected location when present. This is made possible by
automatically extracting location-specific labels from textual reports and
learning the association of expected locations to labels using a hybrid
combination of Bi-Directional Long Short-Term Memory Recurrent Neural Networks
(Bi-LSTM) and DenseNet-121. Use of this expected location to bias the
subsequent attention-guided inference network based on ResNet101 results in the
isolation of the anomaly at the expected location when present. The method is
evaluated on a large chest X-ray dataset.
Related papers
- Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Implicit field learning for unsupervised anomaly detection in medical
images [0.8122270502556374]
An auto-decoder feed-forward neural network learns the distribution of healthy images in the form of a mapping between spatial coordinates and probabilities over a proxy for tissue types.
Anomalies are localized using the voxel-wise probability predicted by our model for the restored image.
We tested our approach in the task of unsupervised localization of gliomas on brain MR images and compared it to several other VAE-based anomaly detection methods.
arXiv Detail & Related papers (2021-06-09T16:57:22Z) - Explaining Predictions of Deep Neural Classifier via Activation Analysis [0.11470070927586014]
We present a novel approach to explain and support an interpretation of the decision-making process to a human expert operating a deep learning system based on Convolutional Neural Network (CNN)
Our results indicate that our method is capable of detecting distinct prediction strategies that enable us to identify the most similar predictions from an existing atlas.
arXiv Detail & Related papers (2020-12-03T20:36:19Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.