Blind Face Restoration via Deep Multi-scale Component Dictionaries
- URL: http://arxiv.org/abs/2008.00418v1
- Date: Sun, 2 Aug 2020 07:02:07 GMT
- Title: Blind Face Restoration via Deep Multi-scale Component Dictionaries
- Authors: Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo,
Lei Zhang
- Abstract summary: We propose a deep face dictionary network (termed as DFDNet) to guide the restoration process of degraded observations.
DFDNet generates deep dictionaries for perceptually significant face components from high-quality images.
component AdaIN is leveraged to eliminate the style diversity between the input and dictionary features.
- Score: 75.02640809505277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent reference-based face restoration methods have received considerable
attention due to their great capability in recovering high-frequency details on
real low-quality images. However, most of these methods require a high-quality
reference image of the same identity, making them only applicable in limited
scenes. To address this issue, this paper suggests a deep face dictionary
network (termed as DFDNet) to guide the restoration process of degraded
observations. To begin with, we use K-means to generate deep dictionaries for
perceptually significant face components (\ie, left/right eyes, nose and mouth)
from high-quality images. Next, with the degraded input, we match and select
the most similar component features from their corresponding dictionaries and
transfer the high-quality details to the input via the proposed dictionary
feature transfer (DFT) block. In particular, component AdaIN is leveraged to
eliminate the style diversity between the input and dictionary features (\eg,
illumination), and a confidence score is proposed to adaptively fuse the
dictionary feature to the input. Finally, multi-scale dictionaries are adopted
in a progressive manner to enable the coarse-to-fine restoration. Experiments
show that our proposed method can achieve plausible performance in both
quantitative and qualitative evaluation, and more importantly, can generate
realistic and promising results on real degraded images without requiring an
identity-belonging reference. The source code and models are available at
\url{https://github.com/csxmli2016/DFDNet}.
Related papers
- DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution [19.33582308829547]
This paper proposes to leverage degradation-aligned language prompt for accurate, fine-grained, and high-fidelity image restoration.
The proposed method achieves a new state-of-the-art perceptual quality level.
arXiv Detail & Related papers (2024-06-24T09:30:36Z) - HARIS: Human-Like Attention for Reference Image Segmentation [5.808325471170541]
We propose a referring image segmentation method called HARIS, which introduces the Human-Like Attention mechanism.
Our method achieves state-of-the-art performance and great zero-shot ability.
arXiv Detail & Related papers (2024-05-17T11:29:23Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
We present ENTED, a new framework for blind face restoration that aims to restore high-quality and realistic portrait images.
We utilize a texture extraction and distribution framework to transfer high-quality texture features between the degraded input and reference image.
The StyleGAN-like architecture in our framework requires high-quality latent codes to generate realistic images.
arXiv Detail & Related papers (2024-01-13T04:54:59Z) - The Right Losses for the Right Gains: Improving the Semantic Consistency
of Deep Text-to-Image Generation with Distribution-Sensitive Losses [0.35898124827270983]
We propose a contrastive learning approach with a novel combination of two loss functions: fake-to-fake loss and fake-to-real loss.
We test this approach on two baseline models: SSAGAN and AttnGAN.
Results show that our approach improves the qualitative results on AttnGAN with style blocks on the CUB dataset.
arXiv Detail & Related papers (2023-12-18T00:05:28Z) - Reinforcement Learning from Diffusion Feedback: Q* for Image Search [2.5835347022640254]
We present two models for image generation using model-agnostic learning.
RLDF is a singular approach for visual imitation through prior-preserving reward function guidance.
It generates high-quality images over varied domains showcasing class-consistency and strong visual diversity.
arXiv Detail & Related papers (2023-11-27T09:20:12Z) - Towards Better Multi-modal Keyphrase Generation via Visual Entity
Enhancement and Multi-granularity Image Noise Filtering [79.44443231700201]
Multi-modal keyphrase generation aims to produce a set of keyphrases that represent the core points of the input text-image pair.
The input text and image are often not perfectly matched, and thus the image may introduce noise into the model.
We propose a novel multi-modal keyphrase generation model, which not only enriches the model input with external knowledge, but also effectively filters image noise.
arXiv Detail & Related papers (2023-09-09T09:41:36Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Learning Dual Memory Dictionaries for Blind Face Restoration [75.66195723349512]
Recent works mainly treat the two aspects, i.e., generic and specific restoration, separately.
This paper suggests a DMDNet by explicitly memorizing the generic and specific features through dual dictionaries.
A new high-quality dataset, termed CelebRef-HQ, is constructed to promote the exploration of specific face restoration in the high-resolution space.
arXiv Detail & Related papers (2022-10-15T01:55:41Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.