Central object segmentation by deep learning for fruits and other
roundish objects
- URL: http://arxiv.org/abs/2008.01251v2
- Date: Sun, 6 Dec 2020 12:34:06 GMT
- Title: Central object segmentation by deep learning for fruits and other
roundish objects
- Authors: Motohisa Fukuda, Takashi Okuno, Shinya Yuki
- Abstract summary: We present CROP (Central Roundish Object Painter), which identifies and paints the object at the center of an RGB image.
This technique could provide us with a means of automatically collecting statistical data of fruit growth in farms.
- Score: 1.9336815376402714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present CROP (Central Roundish Object Painter), which identifies and
paints the object at the center of an RGB image. Primarily CROP works for
roundish fruits in various illumination conditions, but surprisingly, it could
also deal with images of other organic or inorganic materials, or ones by
optical and electron microscopes, although CROP was trained solely by 172
images of fruits. The method involves image segmentation by deep learning, and
the architecture of the neural network is a deeper version of the original
U-Net. This technique could provide us with a means of automatically collecting
statistical data of fruit growth in farms. As an example, we describe our
experiment of processing 510 time series photos automatically to collect the
data on the size and the position of the target fruit. Our trained neural
network CROP and the above automatic programs are available on GitHub with
user-friendly interface programs.
Related papers
- FruitNeRF: A Unified Neural Radiance Field based Fruit Counting Framework [5.363729942767801]
We introduce FruitNeRF, a unified novel fruit counting framework.
We use state-of-the-art view synthesis methods to count any fruit type directly in 3D.
We evaluate our methodology using both real-world and synthetic datasets.
arXiv Detail & Related papers (2024-08-12T14:40:38Z) - Few-Shot Fruit Segmentation via Transfer Learning [4.616529139444651]
We develop a few-shot semantic segmentation framework for infield fruits using transfer learning.
Motivated by similar success in urban scene parsing, we propose specialized pre-training.
We show that models with pre-training learn to distinguish between fruit still on the trees and fruit that have fallen on the ground.
arXiv Detail & Related papers (2024-05-04T04:05:59Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Convolutional Neural Network Ensemble Learning for Hyperspectral
Imaging-based Blackberry Fruit Ripeness Detection in Uncontrolled Farm
Environment [4.292727554656705]
This paper proposes a novel multi-input convolutional neural network (CNN) ensemble classifier for detecting subtle traits of ripeness in blackberry fruits.
The proposed model achieved 95.1% accuracy on unseen sets and 90.2% accuracy with in-field conditions.
arXiv Detail & Related papers (2024-01-09T12:00:17Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
Automated image classification is a common task for supervised machine learning in food science.
We propose an alternative method based on pre-trained vision transformers (ViTs)
It can be easily implemented with limited resources on a standard device.
arXiv Detail & Related papers (2022-07-10T19:52:20Z) - Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep
Learning [14.853897011640022]
We present a system to measure the ripeness of fruit with a hyperspectral camera and a suitable deep neural network architecture.
This architecture did outperform competitive baseline models on the prediction of the state of ripeness.
arXiv Detail & Related papers (2021-04-20T07:43:19Z) - The Intrinsic Dimension of Images and Its Impact on Learning [60.811039723427676]
It is widely believed that natural image data exhibits low-dimensional structure despite the high dimensionality of conventional pixel representations.
In this work, we apply dimension estimation tools to popular datasets and investigate the role of low-dimensional structure in deep learning.
arXiv Detail & Related papers (2021-04-18T16:29:23Z) - Assessing The Importance Of Colours For CNNs In Object Recognition [70.70151719764021]
Convolutional neural networks (CNNs) have been shown to exhibit conflicting properties.
We demonstrate that CNNs often rely heavily on colour information while making a prediction.
We evaluate a model trained with congruent images on congruent, greyscale, and incongruent images.
arXiv Detail & Related papers (2020-12-12T22:55:06Z) - Learning RGB-D Feature Embeddings for Unseen Object Instance
Segmentation [67.88276573341734]
We propose a new method for unseen object instance segmentation by learning RGB-D feature embeddings from synthetic data.
A metric learning loss function is utilized to learn to produce pixel-wise feature embeddings.
We further improve the segmentation accuracy with a new two-stage clustering algorithm.
arXiv Detail & Related papers (2020-07-30T00:23:07Z) - Shape and Viewpoint without Keypoints [63.26977130704171]
We present a learning framework that learns to recover the 3D shape, pose and texture from a single image.
We trained on an image collection without any ground truth 3D shape, multi-view, camera viewpoints or keypoint supervision.
We obtain state-of-the-art camera prediction results and show that we can learn to predict diverse shapes and textures across objects.
arXiv Detail & Related papers (2020-07-21T17:58:28Z) - Real-Time Fruit Recognition and Grasping Estimation for Autonomous Apple
Harvesting [6.634537400804884]
The framework includes a multi-function neural network for fruit recognition and a Pointnet grasp estimation.
The proposed framework can accurately localise and estimate the grasp pose for robotic grasping.
arXiv Detail & Related papers (2020-03-30T09:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.