Temporal Context Aggregation for Video Retrieval with Contrastive
Learning
- URL: http://arxiv.org/abs/2008.01334v2
- Date: Wed, 30 Sep 2020 08:21:08 GMT
- Title: Temporal Context Aggregation for Video Retrieval with Contrastive
Learning
- Authors: Jie Shao, Xin Wen, Bingchen Zhao and Xiangyang Xue
- Abstract summary: We propose TCA, a video representation learning framework that incorporates long-range temporal information between frame-level features.
The proposed method shows a significant performance advantage (17% mAP on FIVR-200K) over state-of-the-art methods with video-level features.
- Score: 81.12514007044456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current research focus on Content-Based Video Retrieval requires
higher-level video representation describing the long-range semantic
dependencies of relevant incidents, events, etc. However, existing methods
commonly process the frames of a video as individual images or short clips,
making the modeling of long-range semantic dependencies difficult. In this
paper, we propose TCA (Temporal Context Aggregation for Video Retrieval), a
video representation learning framework that incorporates long-range temporal
information between frame-level features using the self-attention mechanism. To
train it on video retrieval datasets, we propose a supervised contrastive
learning method that performs automatic hard negative mining and utilizes the
memory bank mechanism to increase the capacity of negative samples. Extensive
experiments are conducted on multiple video retrieval tasks, such as
CC_WEB_VIDEO, FIVR-200K, and EVVE. The proposed method shows a significant
performance advantage (~17% mAP on FIVR-200K) over state-of-the-art methods
with video-level features, and deliver competitive results with 22x faster
inference time comparing with frame-level features.
Related papers
- RAP: Efficient Text-Video Retrieval with Sparse-and-Correlated Adapter [77.0205013713008]
Text-Video Retrieval (TVR) aims to align relevant video content with natural language queries.
To date, most state-of-the-art TVR methods learn image-to-video transfer learning based on large-scale pre-trained vision models.
We propose a sparse-andcorrelated AdaPter (RAP) to fine-tune the pre-trained model with a few parameterized layers.
arXiv Detail & Related papers (2024-05-29T19:23:53Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval (VCMR) is a new video retrieval task aimed at retrieving a relevant moment from a large corpus of untrimmed videos using a text query.
We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.
For video retrieval, we introduce a multi-modal collaborative video retriever, generating different query representations for the two modalities.
For moment localization, we propose the focus-then-fuse moment localizer, utilizing modality-specific gates to capture essential content.
arXiv Detail & Related papers (2024-02-21T07:16:06Z) - Self-Supervised Video Representation Learning via Latent Time Navigation [12.721647696921865]
Self-supervised video representation learning aims at maximizing similarity between different temporal segments of one video.
We propose Latent Time Navigation (LTN) to capture fine-grained motions.
Our experimental analysis suggests that learning video representations by LTN consistently improves performance of action classification.
arXiv Detail & Related papers (2023-05-10T20:06:17Z) - Frame-wise Action Representations for Long Videos via Sequence
Contrastive Learning [44.412145665354736]
We introduce a novel contrastive action representation learning framework to learn frame-wise action representations.
Inspired by the recent progress of self-supervised learning, we present a novel sequence contrastive loss (SCL) applied on two correlated views.
Our approach also shows outstanding performance on video alignment and fine-grained frame retrieval tasks.
arXiv Detail & Related papers (2022-03-28T17:59:54Z) - Video Summarization Based on Video-text Modelling [0.0]
We propose a multimodal self-supervised learning framework to obtain semantic representations of videos.
We also introduce a progressive video summarization method, where the important content in a video is pinpointed progressively to generate better summaries.
An objective evaluation framework is proposed to measure the quality of video summaries based on video classification.
arXiv Detail & Related papers (2022-01-07T15:21:46Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Video Corpus Moment Retrieval with Contrastive Learning [56.249924768243375]
Video corpus moment retrieval (VCMR) is to retrieve a temporal moment that semantically corresponds to a given text query.
We propose a Retrieval and Localization Network with Contrastive Learning (ReLoCLNet) for VCMR.
Experimental results show that ReLoCLNet encodes text and video separately for efficiency, its retrieval accuracy is comparable with baselines adopting cross-modal interaction learning.
arXiv Detail & Related papers (2021-05-13T12:54:39Z) - Coherent Loss: A Generic Framework for Stable Video Segmentation [103.78087255807482]
We investigate how a jittering artifact degrades the visual quality of video segmentation results.
We propose a Coherent Loss with a generic framework to enhance the performance of a neural network against jittering artifacts.
arXiv Detail & Related papers (2020-10-25T10:48:28Z) - Hierarchical Attention Network for Action Segmentation [45.19890687786009]
The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video.
We propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time.
We evaluate our system on challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets.
arXiv Detail & Related papers (2020-05-07T02:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.