TREND: Transferability based Robust ENsemble Design
- URL: http://arxiv.org/abs/2008.01524v2
- Date: Tue, 30 Mar 2021 17:00:39 GMT
- Title: TREND: Transferability based Robust ENsemble Design
- Authors: Deepak Ravikumar, Sangamesh Kodge, Isha Garg, Kaushik Roy
- Abstract summary: We study the effect of network architecture, input, weight and activation quantization on transferability of adversarial samples.
We show that transferability is significantly hampered by input quantization between source and target.
We propose a new state-of-the-art ensemble attack to combat this.
- Score: 6.663641564969944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning models hold state-of-the-art performance in many fields, but
their vulnerability to adversarial examples poses threat to their ubiquitous
deployment in practical settings. Additionally, adversarial inputs generated on
one classifier have been shown to transfer to other classifiers trained on
similar data, which makes the attacks possible even if model parameters are not
revealed to the adversary. This property of transferability has not yet been
systematically studied, leading to a gap in our understanding of robustness of
neural networks to adversarial inputs. In this work, we study the effect of
network architecture, initialization, optimizer, input, weight and activation
quantization on transferability of adversarial samples. We also study the
effect of different attacks on transferability. Our experiments reveal that
transferability is significantly hampered by input quantization and
architectural mismatch between source and target, is unaffected by
initialization but the choice of optimizer turns out to be critical. We observe
that transferability is architecture-dependent for both weight and activation
quantized models. To quantify transferability, we use simple metric and
demonstrate the utility of the metric in designing a methodology to build
ensembles with improved adversarial robustness. When attacking ensembles we
observe that "gradient domination" by a single ensemble member model hampers
existing attacks. To combat this we propose a new state-of-the-art ensemble
attack. We compare the proposed attack with existing attack techniques to show
its effectiveness. Finally, we show that an ensemble consisting of carefully
chosen diverse networks achieves better adversarial robustness than would
otherwise be possible with a single network.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial
Transferability [26.39964737311377]
We propose an adaptive ensemble attack, dubbed AdaEA, to adaptively control the fusion of the outputs from each model.
We achieve considerable improvement over the existing ensemble attacks on various datasets.
arXiv Detail & Related papers (2023-08-05T15:12:36Z) - Common Knowledge Learning for Generating Transferable Adversarial
Examples [60.1287733223249]
This paper focuses on an important type of black-box attacks, where the adversary generates adversarial examples by a substitute (source) model.
Existing methods tend to give unsatisfactory adversarial transferability when the source and target models are from different types of DNN architectures.
We propose a common knowledge learning (CKL) framework to learn better network weights to generate adversarial examples.
arXiv Detail & Related papers (2023-07-01T09:07:12Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
Ensembles [20.46399318111058]
Adversarial attacks can mislead CNN models with small perturbations, which can effectively transfer between different models trained on the same dataset.
We propose DVERGE, which isolates the adversarial vulnerability in each sub-model by distilling non-robust features.
The novel diversity metric and training procedure enables DVERGE to achieve higher robustness against transfer attacks.
arXiv Detail & Related papers (2020-09-30T14:57:35Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.