Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network
- URL: http://arxiv.org/abs/2008.01613v2
- Date: Sat, 15 Aug 2020 07:47:01 GMT
- Title: Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network
- Authors: Haotian Li, Huan Wei, Yong Wang, Yangqiu Song, Huamin Qu
- Abstract summary: We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
- Score: 56.62345811216183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Student performance prediction is critical to online education. It can
benefit many downstream tasks on online learning platforms, such as estimating
dropout rates, facilitating strategic intervention, and enabling adaptive
online learning. Interactive online question pools provide students with
interesting interactive questions to practice their knowledge in online
education. However, little research has been done on student performance
prediction in interactive online question pools. Existing work on student
performance prediction targets at online learning platforms with predefined
course curriculum and accurate knowledge labels like MOOC platforms, but they
are not able to fully model knowledge evolution of students in interactive
online question pools. In this paper, we propose a novel approach using Graph
Neural Networks (GNNs) to achieve better student performance prediction in
interactive online question pools. Specifically, we model the relationship
between students and questions using student interactions to construct the
student-interaction-question network and further present a new GNN model,
called R^2GCN, which intrinsically works for the heterogeneous networks, to
achieve generalizable student performance prediction in interactive online
question pools. We evaluate the effectiveness of our approach on a real-world
dataset consisting of 104,113 mouse trajectories generated in the
problem-solving process of over 4000 students on 1631 questions. The experiment
results show that our approach can achieve a much higher accuracy of student
performance prediction than both traditional machine learning approaches and
GNN models.
Related papers
- A Comparative Analysis of Student Performance Predictions in Online Courses using Heterogeneous Knowledge Graphs [0.0]
We analyze a heterogeneous knowledge graph consisting of students, course videos, formative assessments and their interactions to predict student performance.
We then compare the models generated between 5 on-campus and 2 fully-online MOOC-style instances of the same course.
The model developed achieved a 70-90% accuracy of predicting whether a student would pass a particular problem set based on content consumed, course instance, and modality.
arXiv Detail & Related papers (2024-05-19T03:33:59Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Enhancing Student Performance Prediction on Learnersourced Questions
with SGNN-LLM Synergy [11.735587384038753]
We introduce an innovative strategy that synergizes the potential of integrating Signed Graph Neural Networks (SGNNs) and Large Language Model (LLM) embeddings.
Our methodology employs a signed bipartite graph to comprehensively model student answers, complemented by a contrastive learning framework that enhances noise resilience.
arXiv Detail & Related papers (2023-09-23T23:37:55Z) - CLGT: A Graph Transformer for Student Performance Prediction in
Collaborative Learning [6.140954034246379]
We present an extended graph transformer framework for collaborative learning (CLGT) for evaluating and predicting the performance of students.
The experimental results confirm that the proposed CLGT outperforms the baseline models in terms of performing predictions based on the real-world datasets.
arXiv Detail & Related papers (2023-07-30T09:54:30Z) - A Few-shot Learning Graph Multi-Trajectory Evolution Network for
Forecasting Multimodal Baby Connectivity Development from a Baseline
Timepoint [53.73316520733503]
We propose a Graph Multi-Trajectory Evolution Network (GmTE-Net), which adopts a teacher-student paradigm.
This is the first teacher-student architecture tailored for brain graph multi-trajectory growth prediction.
arXiv Detail & Related papers (2021-10-06T08:26:57Z) - Graph-based Exercise- and Knowledge-Aware Learning Network for Student
Performance Prediction [8.21303828329009]
We propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction.
We learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts.
arXiv Detail & Related papers (2021-06-01T06:53:17Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
Personalization and active learning are key aspects to successful learning.
We run a comparative head-to-head study of learning outcomes for two popular online learning platforms.
arXiv Detail & Related papers (2021-04-15T20:40:24Z) - EPARS: Early Prediction of At-risk Students with Online and Offline
Learning Behaviors [55.33024245762306]
Early prediction of students at risk (STAR) is an effective and significant means to provide timely intervention for dropout and suicide.
Existing works mostly rely on either online or offline learning behaviors which are not comprehensive enough to capture the whole learning processes.
We propose a novel algorithm (EPARS) that could early predict STAR in a semester by modeling online and offline learning behaviors.
arXiv Detail & Related papers (2020-06-06T12:56:26Z) - Analyzing Student Strategies In Blended Courses Using Clickstream Data [32.81171098036632]
We use pattern mining and models borrowed from Natural Language Processing to understand student interactions.
Fine-grained clickstream data is collected through Diderot, a non-commercial educational support system.
Our results suggest that the proposed hybrid NLP methods can provide valuable insights even in the low-data setting of blended courses.
arXiv Detail & Related papers (2020-05-31T03:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.