Deep Inverse Q-learning with Constraints
- URL: http://arxiv.org/abs/2008.01712v1
- Date: Tue, 4 Aug 2020 17:21:51 GMT
- Title: Deep Inverse Q-learning with Constraints
- Authors: Gabriel Kalweit, Maria Huegle, Moritz Werling, Joschka Boedecker
- Abstract summary: We introduce a novel class of algorithms that only needs to solve the MDP underlying the demonstrated behavior once to recover the expert policy.
We show how to extend this class of algorithms to continuous state-spaces via function approximation and how to estimate a corresponding action-value function.
We evaluate the resulting algorithms called Inverse Action-value Iteration, Inverse Q-learning and Deep Inverse Q-learning on the Objectworld benchmark.
- Score: 15.582910645906145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Popular Maximum Entropy Inverse Reinforcement Learning approaches require the
computation of expected state visitation frequencies for the optimal policy
under an estimate of the reward function. This usually requires intermediate
value estimation in the inner loop of the algorithm, slowing down convergence
considerably. In this work, we introduce a novel class of algorithms that only
needs to solve the MDP underlying the demonstrated behavior once to recover the
expert policy. This is possible through a formulation that exploits a
probabilistic behavior assumption for the demonstrations within the structure
of Q-learning. We propose Inverse Action-value Iteration which is able to fully
recover an underlying reward of an external agent in closed-form analytically.
We further provide an accompanying class of sampling-based variants which do
not depend on a model of the environment. We show how to extend this class of
algorithms to continuous state-spaces via function approximation and how to
estimate a corresponding action-value function, leading to a policy as close as
possible to the policy of the external agent, while optionally satisfying a
list of predefined hard constraints. We evaluate the resulting algorithms
called Inverse Action-value Iteration, Inverse Q-learning and Deep Inverse
Q-learning on the Objectworld benchmark, showing a speedup of up to several
orders of magnitude compared to (Deep) Max-Entropy algorithms. We further apply
Deep Constrained Inverse Q-learning on the task of learning autonomous
lane-changes in the open-source simulator SUMO achieving competent driving
after training on data corresponding to 30 minutes of demonstrations.
Related papers
- Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Offline Reinforcement Learning with Implicit Q-Learning [85.62618088890787]
Current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy.
We propose an offline RL method that never needs to evaluate actions outside of the dataset.
This method enables the learned policy to improve substantially over the best behavior in the data through generalization.
arXiv Detail & Related papers (2021-10-12T17:05:05Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
We introduce an algorithm that efficiently learns policies in non-stationary environments.
It analyzes a possibly infinite stream of data and computes, in real-time, high-confidence change-point detection statistics.
We show that (i) this algorithm minimizes the delay until unforeseen changes to a context are detected, thereby allowing for rapid responses.
arXiv Detail & Related papers (2021-05-20T01:57:52Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - Inverse Reinforcement Learning from a Gradient-based Learner [41.8663538249537]
Inverse Reinforcement Learning addresses the problem of inferring an expert's reward function from demonstrations.
In this paper, we propose a new algorithm for this setting, in which the goal is to recover the reward function being optimized by an agent.
arXiv Detail & Related papers (2020-07-15T16:41:00Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.