Electron shelving of a superconducting artificial atom
- URL: http://arxiv.org/abs/2008.02423v1
- Date: Thu, 6 Aug 2020 01:50:09 GMT
- Title: Electron shelving of a superconducting artificial atom
- Authors: Nathana\"el Cottet, Haonan Xiong, Long B. Nguyen, Yen-Hsiang Lin,
Vladimir E. Manucharyan
- Abstract summary: We demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide.
Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state.
The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interfacing stationary qubits with propagating photons is a fundamental
problem in quantum technology. Cavity quantum electrodynamics (CQED) invokes a
mediator degree of freedom in the form of a far-detuned cavity mode, the
adaptation of which to superconducting circuits (cQED) proved remarkably
fruitful. The cavity both blocks the qubit emission and it enables a dispersive
readout of the qubit state. Yet, a more direct (cavityless) interface is
possible with atomic clocks, in which an orbital cycling transition can scatter
photons depending on the state of a hyperfine or quadrupole qubit transition.
Originally termed "electron shelving", such a conditional fluorescence
phenomenon is the cornerstone of many quantum information platforms, including
trapped ions, solid state defects, and semiconductor quantum dots. Here we
apply the shelving idea to circuit atoms and demonstrate a conditional
fluorescence readout of fluxonium qubit placed inside a matched one-dimensional
waveguide. Cycling the non-computational transition between ground and third
excited states produces a microwave photon every 91 ns conditioned on the qubit
ground state, while the qubit coherence time exceeds 50 us. The readout has a
built-in quantum non-demolition property, allowing over 100 fluorescence cycles
in agreement with a four-level optical pumping model. Our result introduces a
resource-efficient alternative to cQED. It also adds a state-of-the-art quantum
memory to the growing toolbox of waveguide QED.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Demonstration of deterministic SWAP gate between superconducting and
frequency-encoded microwave-photon qubits [0.0]
We show a SWAP gate between the superconducting-atom and microwave-photon qubits.
We confirm the bidirectional quantum state transfer between the atom and photon qubits.
The present atom-photon gate, equipped with an in situ tunability of the gate type, would enable various applications in distributed quantum computation.
arXiv Detail & Related papers (2023-02-09T10:27:16Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.