Offline Meta Learning of Exploration
- URL: http://arxiv.org/abs/2008.02598v3
- Date: Fri, 12 Feb 2021 08:17:23 GMT
- Title: Offline Meta Learning of Exploration
- Authors: Ron Dorfman, Idan Shenfeld, Aviv Tamar
- Abstract summary: We take a Bayesian RL (BRL) view, and seek to learn a Bayes-optimal policy from the offline data.
We develop an off-policy BRL method that learns to plan an exploration strategy based on an adaptive neural belief estimate.
We characterize the problem, and suggest resolutions via data collection and modification procedures.
- Score: 19.172298978914597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider the following instance of the Offline Meta Reinforcement Learning
(OMRL) problem: given the complete training logs of $N$ conventional RL agents,
trained on $N$ different tasks, design a meta-agent that can quickly maximize
reward in a new, unseen task from the same task distribution. In particular,
while each conventional RL agent explored and exploited its own different task,
the meta-agent must identify regularities in the data that lead to effective
exploration/exploitation in the unseen task. Here, we take a Bayesian RL (BRL)
view, and seek to learn a Bayes-optimal policy from the offline data. Building
on the recent VariBAD BRL approach, we develop an off-policy BRL method that
learns to plan an exploration strategy based on an adaptive neural belief
estimate. However, learning to infer such a belief from offline data brings a
new identifiability issue we term MDP ambiguity. We characterize the problem,
and suggest resolutions via data collection and modification procedures.
Finally, we evaluate our framework on a diverse set of domains, including
difficult sparse reward tasks, and demonstrate learning of effective
exploration behavior that is qualitatively different from the exploration used
by any RL agent in the data.
Related papers
- RL$^3$: Boosting Meta Reinforcement Learning via RL inside RL$^2$ [12.111848705677142]
We propose RL$3$, a hybrid approach that incorporates action-values, learned per task through traditional RL, in the inputs to meta-RL.
We show that RL$3$ earns greater cumulative reward in the long term, compared to RL$2$, while maintaining data-efficiency in the short term, and generalizes better to out-of-distribution tasks.
arXiv Detail & Related papers (2023-06-28T04:16:16Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
A major challenge of reinforcement learning (RL) in real-world applications is the variation between environments, tasks or clients.
Standard MRL methods optimize the average return over tasks, but often suffer from poor results in tasks of high risk or difficulty.
In this work, we define a robust MRL objective with a controlled level.
The data inefficiency is addressed via the novel Robust Meta RL algorithm (RoML)
arXiv Detail & Related papers (2023-01-26T14:54:39Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Offline Meta-Reinforcement Learning with Online Self-Supervision [66.42016534065276]
We propose a hybrid offline meta-RL algorithm, which uses offline data with rewards to meta-train an adaptive policy.
Our method uses the offline data to learn the distribution of reward functions, which is then sampled to self-supervise reward labels for the additional online data.
We find that using additional data and self-generated rewards significantly improves an agent's ability to generalize.
arXiv Detail & Related papers (2021-07-08T17:01:32Z) - Off-Policy Meta-Reinforcement Learning Based on Feature Embedding Spaces [14.029933823101084]
We propose a novel off-policy meta-RL method, embedding learning and evaluation of uncertainty (ELUE)
ELUE learns a belief model over the embedding space and a belief-conditional policy and Q-function.
We demonstrate that ELUE outperforms state-of-the-art meta RL methods through experiments on meta-RL benchmarks.
arXiv Detail & Related papers (2021-01-06T05:51:38Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z) - MetaCURE: Meta Reinforcement Learning with Empowerment-Driven
Exploration [52.48362697163477]
Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on sparse-reward tasks.
We model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning.
We develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies.
arXiv Detail & Related papers (2020-06-15T06:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.