Cascade Graph Neural Networks for RGB-D Salient Object Detection
- URL: http://arxiv.org/abs/2008.03087v1
- Date: Fri, 7 Aug 2020 10:59:04 GMT
- Title: Cascade Graph Neural Networks for RGB-D Salient Object Detection
- Authors: Ao Luo, Xin Li, Fan Yang, Zhicheng Jiao, Hong Cheng and Siwei Lyu
- Abstract summary: We study the problem of salient object detection (SOD) for RGB-D images using both color and depth information.
We introduce Cascade Graph Neural Networks(Cas-Gnn),a unified framework which is capable of comprehensively distilling and reasoning the mutual benefits between these two data sources.
Cas-Gnn achieves significantly better performance than all existing RGB-DSOD approaches on several widely-used benchmarks.
- Score: 41.57218490671026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of salient object detection (SOD) for
RGB-D images using both color and depth information.A major technical challenge
in performing salient object detection fromRGB-D images is how to fully
leverage the two complementary data sources. Current works either simply
distill prior knowledge from the corresponding depth map for handling the
RGB-image or blindly fuse color and geometric information to generate the
coarse depth-aware representations, hindering the performance of RGB-D saliency
detectors.In this work, we introduceCascade Graph Neural Networks(Cas-Gnn),a
unified framework which is capable of comprehensively distilling and reasoning
the mutual benefits between these two data sources through a set of cascade
graphs, to learn powerful representations for RGB-D salient object detection.
Cas-Gnn processes the two data sources individually and employs a novelCascade
Graph Reasoning(CGR) module to learn powerful dense feature embeddings, from
which the saliency map can be easily inferred. Contrast to the previous
approaches, the explicitly modeling and reasoning of high-level relations
between complementary data sources allows us to better overcome challenges such
as occlusions and ambiguities. Extensive experiments demonstrate that Cas-Gnn
achieves significantly better performance than all existing RGB-DSOD approaches
on several widely-used benchmarks.
Related papers
- AGG-Net: Attention Guided Gated-convolutional Network for Depth Image
Completion [1.8820731605557168]
We propose a new model for depth image completion based on the Attention Guided Gated-convolutional Network (AGG-Net)
In the encoding stage, an Attention Guided Gated-Convolution (AG-GConv) module is proposed to realize the fusion of depth and color features at different scales.
In the decoding stage, an Attention Guided Skip Connection (AG-SC) module is presented to avoid introducing too many depth-irrelevant features to the reconstruction.
arXiv Detail & Related papers (2023-09-04T14:16:08Z) - PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised
RGB-D Point Cloud Registration [6.030097207369754]
We propose a network implementing multi-scale bidirectional fusion between RGB images and point clouds generated from depth images.
Our method achieves new state-of-the-art performance.
arXiv Detail & Related papers (2023-08-09T08:13:46Z) - Multi-Scale Iterative Refinement Network for RGB-D Salient Object
Detection [7.062058947498447]
salient visual cues appear in various scales and resolutions of RGB images due to semantic gaps at different feature levels.
Similar salient patterns are available in cross-modal depth images as well as multi-scale versions.
We devise attention based fusion module (ABF) to address on cross-modal correlation.
arXiv Detail & Related papers (2022-01-24T10:33:00Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images.
We present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection.
arXiv Detail & Related papers (2022-01-01T03:02:27Z) - RGB-D Salient Object Detection with Ubiquitous Target Awareness [37.6726410843724]
We make the first attempt to solve the RGB-D salient object detection problem with a novel depth-awareness framework.
We propose a Ubiquitous Target Awareness (UTA) network to solve three important challenges in RGB-D SOD task.
Our proposed UTA network is depth-free for inference and runs in real-time with 43 FPS.
arXiv Detail & Related papers (2021-09-08T04:27:29Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
Existing RGB-D saliency datasets are small, which may lead to overfitting and limited generalization for diverse scenarios.
We propose a semi-supervised system for RGB-D saliency detection that can be trained on smaller RGB-D saliency datasets without saliency ground truth.
arXiv Detail & Related papers (2020-07-03T14:24:41Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
We make the first attempt in realizing an unified depth-aware framework with only RGB information as input for inference.
Not only surpasses the state-of-the-art performances on five public RGB SOD benchmarks, but also surpasses the RGBD-based methods on five benchmarks by a large margin.
arXiv Detail & Related papers (2020-05-30T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.