GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification
- URL: http://arxiv.org/abs/2008.03433v2
- Date: Thu, 15 Oct 2020 03:16:07 GMT
- Title: GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification
- Authors: John T. Halloran and David M. Rocke
- Abstract summary: One of the most efficient methods to solve L2-regularized primal problems, such as logistic regression and linear support vector machine (SVM) classification, is the widely used trust region Newton algorithm, TRON.
We show that using judicious GPU-optimization principles, TRON training time for different losses and feature representations may be drastically reduced.
- Score: 10.66048003460524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most efficient methods to solve L2-regularized primal problems,
such as logistic regression and linear support vector machine (SVM)
classification, is the widely used trust region Newton algorithm, TRON. While
TRON has recently been shown to enjoy substantial speedups on shared-memory
multi-core systems, exploiting graphical processing units (GPUs) to speed up
the method is significantly more difficult, owing to the highly complex and
heavily sequential nature of the algorithm. In this work, we show that using
judicious GPU-optimization principles, TRON training time for different losses
and feature representations may be drastically reduced. For sparse feature
sets, we show that using GPUs to train logistic regression classifiers in
LIBLINEAR is up to an order-of-magnitude faster than solely using
multithreading. For dense feature sets--which impose far more stringent memory
constraints--we show that GPUs substantially reduce the lengthy SVM learning
times required for state-of-the-art proteomics analysis, leading to dramatic
improvements over recently proposed speedups. Furthermore, we show how GPU
speedups may be mixed with multithreading to enable such speedups when the
dataset is too large for GPU memory requirements; on a massive dense proteomics
dataset of nearly a quarter-billion data instances, these mixed-architecture
speedups reduce SVM analysis time from over half a week to less than a single
day while using limited GPU memory.
Related papers
- Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
Transformers and large language models(LLMs) have seen rapid adoption in all domains.
Training of transformers is very expensive and often hits a memory wall''
We propose a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU.
arXiv Detail & Related papers (2024-10-26T00:43:59Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - High Performance Computing Applied to Logistic Regression: A CPU and GPU
Implementation Comparison [0.0]
We present a versatile GPU-based parallel version of Logistic Regression (LR)
Our implementation is a direct translation of the parallel Gradient Descent Logistic Regression algorithm proposed by X. Zou et al.
Our method is particularly advantageous for real-time prediction applications like image recognition, spam detection, and fraud detection.
arXiv Detail & Related papers (2023-08-19T14:49:37Z) - DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training [18.52206409432894]
DistTGL is an efficient and scalable solution to train memory-based TGNNs on distributed GPU clusters.
In experiments, DistTGL achieves near-linear convergence speedup, outperforming state-of-the-art single-machine method by 14.5% in accuracy and 10.17x in training throughput.
arXiv Detail & Related papers (2023-07-14T22:52:27Z) - Recipe for Fast Large-scale SVM Training: Polishing, Parallelism, and
more RAM! [0.0]
Support vector machines (SVMs) are a standard method in the machine learning toolbox.
Non-linear kernel SVMs often deliver highly accurate predictors, however, at the cost of long training times.
In this work, we combine both approaches to design an extremely fast dual SVM solver.
arXiv Detail & Related papers (2022-07-03T11:51:41Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVMs) are widely used in machine learning.
However, even modern and optimized implementations do not scale well for large non-trivial dense data sets on cutting-edge hardware.
PLSSVM can be used as a drop-in replacement for an LVM.
arXiv Detail & Related papers (2022-02-25T13:24:23Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
We present a versatile new input encoding that permits the use of a smaller network without sacrificing quality.
A small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through a gradient descent.
We achieve a combined speed of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds.
arXiv Detail & Related papers (2022-01-16T07:22:47Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
We show that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
We show experimentally that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
arXiv Detail & Related papers (2021-10-13T20:58:15Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.