Towards Lossless Binary Convolutional Neural Networks Using Piecewise
Approximation
- URL: http://arxiv.org/abs/2008.03520v2
- Date: Sat, 29 Aug 2020 19:06:19 GMT
- Title: Towards Lossless Binary Convolutional Neural Networks Using Piecewise
Approximation
- Authors: Baozhou Zhu, Zaid Al-Ars, Wei Pan
- Abstract summary: CNNs can significantly reduce the number of arithmetic operations and the size of memory storage.
However, the accuracy degradation of single and multiple binary CNNs is unacceptable for modern architectures.
We propose a Piecewise Approximation scheme for multiple binary CNNs which lessens accuracy loss by approximating full precision weights and activations.
- Score: 4.023728681102073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary Convolutional Neural Networks (CNNs) can significantly reduce the
number of arithmetic operations and the size of memory storage, which makes the
deployment of CNNs on mobile or embedded systems more promising. However, the
accuracy degradation of single and multiple binary CNNs is unacceptable for
modern architectures and large scale datasets like ImageNet. In this paper, we
proposed a Piecewise Approximation (PA) scheme for multiple binary CNNs which
lessens accuracy loss by approximating full precision weights and activations
efficiently and maintains parallelism of bitwise operations to guarantee
efficiency. Unlike previous approaches, the proposed PA scheme segments
piece-wisely the full precision weights and activations, and approximates each
piece with a scaling coefficient. Our implementation on ResNet with different
depths on ImageNet can reduce both Top-1 and Top-5 classification accuracy gap
compared with full precision to approximately 1.0%. Benefited from the
binarization of the downsampling layer, our proposed PA-ResNet50 requires less
memory usage and two times Flops than single binary CNNs with 4 weights and 5
activations bases. The PA scheme can also generalize to other architectures
like DenseNet and MobileNet with similar approximation power as ResNet which is
promising for other tasks using binary convolutions. The code and pretrained
models will be publicly available.
Related papers
- Tiled Bit Networks: Sub-Bit Neural Network Compression Through Reuse of Learnable Binary Vectors [4.95475852994362]
We propose a new form of quantization to tile neural network layers with sequences of bits to achieve sub-bit compression of binary-weighted neural networks.
We employ the approach to both fully-connected and convolutional layers, which make up the breadth of space in most neural architectures.
arXiv Detail & Related papers (2024-07-16T15:55:38Z) - RedBit: An End-to-End Flexible Framework for Evaluating the Accuracy of
Quantized CNNs [9.807687918954763]
Convolutional Neural Networks (CNNs) have become the standard class of deep neural network for image processing, classification and segmentation tasks.
RedBit is an open-source framework that provides a transparent, easy-to-use interface to evaluate the effectiveness of different algorithms on network accuracy.
arXiv Detail & Related papers (2023-01-15T21:27:35Z) - AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets [27.022212653067367]
This paper studies the Binary Neural Networks (BNNs) in which weights and activations are both binarized into 1-bit values.
We present a simple yet effective approach called AdaBin to adaptively obtain the optimal binary sets.
Experimental results on benchmark models and datasets demonstrate that the proposed AdaBin is able to achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-08-17T05:43:33Z) - Elastic-Link for Binarized Neural Network [9.83865304744923]
"Elastic-Link" (EL) module enrich information flow within a BNN by adaptively adding real-valued input features to the subsequent convolutional output features.
EL produces a significant improvement on the challenging large-scale ImageNet dataset.
With the integration of ReActNet, it yields a new state-of-the-art result of 71.9% top-1 accuracy.
arXiv Detail & Related papers (2021-12-19T13:49:29Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Two compact networks, called Layer-Net (L-Net) and Channel-Net (C-Net), predict on a per-instance basis which layers or filters/channels are redundant and therefore should be skipped.
On the CIFAR-10 dataset, LC-Net results in up to 11.9$times$ fewer floating-point operations (FLOPs) and up to 3.3% higher accuracy compared to other dynamic inference methods.
On the ImageNet dataset, LC-Net achieves up to 1.4$times$ fewer FLOPs and up to 4.6% higher Top-1 accuracy than the other methods.
arXiv Detail & Related papers (2020-07-29T23:17:48Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Training Binary Neural Networks with Real-to-Binary Convolutions [52.91164959767517]
We show how to train binary networks to within a few percent points of the full precision counterpart.
We show how to build a strong baseline, which already achieves state-of-the-art accuracy.
We show that, when putting all of our improvements together, the proposed model beats the current state of the art by more than 5% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-03-25T17:54:38Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.