Towards Geometry Guided Neural Relighting with Flash Photography
- URL: http://arxiv.org/abs/2008.05157v1
- Date: Wed, 12 Aug 2020 08:03:28 GMT
- Title: Towards Geometry Guided Neural Relighting with Flash Photography
- Authors: Di Qiu, Jin Zeng, Zhanghan Ke, Wenxiu Sun, Chengxi Yang
- Abstract summary: We propose a framework for image relighting from a single flash photograph with its corresponding depth map using deep learning.
We experimentally validate the advantage of our geometry guided approach over state-of-the-art image-based approaches in intrinsic image decomposition and image relighting.
- Score: 26.511476565209026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous image based relighting methods require capturing multiple images to
acquire high frequency lighting effect under different lighting conditions,
which needs nontrivial effort and may be unrealistic in certain practical use
scenarios. While such approaches rely entirely on cleverly sampling the color
images under different lighting conditions, little has been done to utilize
geometric information that crucially influences the high-frequency features in
the images, such as glossy highlight and cast shadow. We therefore propose a
framework for image relighting from a single flash photograph with its
corresponding depth map using deep learning. By incorporating the depth map,
our approach is able to extrapolate realistic high-frequency effects under
novel lighting via geometry guided image decomposition from the flashlight
image, and predict the cast shadow map from the shadow-encoding transformed
depth map. Moreover, the single-image based setup greatly simplifies the data
capture process. We experimentally validate the advantage of our geometry
guided approach over state-of-the-art image-based approaches in intrinsic image
decomposition and image relighting, and also demonstrate our performance on
real mobile phone photo examples.
Related papers
- Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - WildLight: In-the-wild Inverse Rendering with a Flashlight [77.31815397135381]
We propose a practical photometric solution for in-the-wild inverse rendering under unknown ambient lighting.
Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone.
We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques.
arXiv Detail & Related papers (2023-03-24T17:59:56Z) - Designing An Illumination-Aware Network for Deep Image Relighting [69.750906769976]
We present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image.
In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process.
Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T16:21:24Z) - Geometry-aware Single-image Full-body Human Relighting [37.381122678376805]
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting.
Previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows.
Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions.
arXiv Detail & Related papers (2022-07-11T10:21:02Z) - A Dark Flash Normal Camera [6.686241050151697]
Casual photography is often performed in uncontrolled lighting that can result in low quality images and degrade the performance of downstream processing.
We consider the problem of estimating surface normal and reflectance maps of scenes depicting people despite these conditions by supplementing the available visible illumination with a single near infrared (NIR) light source and camera, a so-called "dark flash image"
Our method takes as input a single color image captured under arbitrary visible lighting and a single dark flash image captured under controlled front-lit NIR lighting at the same viewpoint, and computes a normal map, a diffuse albedo map, and a specular intensity map of the
arXiv Detail & Related papers (2020-12-11T05:08:22Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
We propose a learning-based solution for the "super-resolution" of scans of human faces taken from a light stage.
Our method aggregates the captured images corresponding to neighboring lights in the stage, and uses a neural network to synthesize a rendering of the face.
Our learned model is able to produce renderings for arbitrary light directions that exhibit realistic shadows and specular highlights.
arXiv Detail & Related papers (2020-10-17T23:40:43Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.