PAM:Point-wise Attention Module for 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2008.05242v1
- Date: Wed, 12 Aug 2020 11:29:48 GMT
- Title: PAM:Point-wise Attention Module for 6D Object Pose Estimation
- Authors: Myoungha Song, Jeongho Lee, Donghwan Kim
- Abstract summary: 6D pose estimation refers to object recognition and estimation of 3D rotation and 3D translation.
Previous methods utilized depth information in the refinement process or were designed as a heterogeneous architecture for each data space to extract feature.
This paper proposes a Point Attention Module that can efficiently extract powerful feature from RGB-D.
- Score: 2.4815579733050153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 6D pose estimation refers to object recognition and estimation of 3D rotation
and 3D translation. The key technology for estimating 6D pose is to estimate
pose by extracting enough features to find pose in any environment. Previous
methods utilized depth information in the refinement process or were designed
as a heterogeneous architecture for each data space to extract feature.
However, these methods are limited in that they cannot extract sufficient
feature. Therefore, this paper proposes a Point Attention Module that can
efficiently extract powerful feature from RGB-D. In our Module, attention map
is formed through a Geometric Attention Path(GAP) and Channel Attention
Path(CAP). In GAP, it is designed to pay attention to important information in
geometric information, and CAP is designed to pay attention to important
information in Channel information. We show that the attention module
efficiently creates feature representations without significantly increasing
computational complexity. Experimental results show that the proposed method
outperforms the existing methods in benchmarks, YCB Video and LineMod. In
addition, the attention module was applied to the classification task, and it
was confirmed that the performance significantly improved compared to the
existing model.
Related papers
- OccAM's Laser: Occlusion-based Attribution Maps for 3D Object Detectors
on LiDAR Data [8.486063950768694]
We propose a method to generate attribution maps for 3D object detection in LiDAR point clouds.
These maps indicate the importance of each 3D point in predicting the specific objects.
We show a detailed evaluation of the attribution maps and demonstrate that they are interpretable and highly informative.
arXiv Detail & Related papers (2022-04-13T18:00:30Z) - ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation [76.31125154523056]
We present a discrete descriptor, which can represent the object surface densely.
We also propose a coarse to fine training strategy, which enables fine-grained correspondence prediction.
arXiv Detail & Related papers (2022-03-17T16:16:24Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image.
Our framework makes inferences based on the rich geometric information of the object in the depth channel alone.
Our framework competes with state-of-the-art approaches that require labeled real-world images.
arXiv Detail & Related papers (2021-06-27T10:41:50Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
This paper revisits the role of top-down modeling in salient object detection.
It designs a novel densely nested top-down flows (DNTDF)-based framework.
In every stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PCSP)
arXiv Detail & Related papers (2021-02-18T03:14:02Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - 3D Point-to-Keypoint Voting Network for 6D Pose Estimation [8.801404171357916]
We propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints.
The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD.
arXiv Detail & Related papers (2020-12-22T11:43:15Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Object 6D Pose Estimation with Non-local Attention [29.929911622127502]
We propose a network that integrate 6D object pose parameter estimation into the object detection framework.
The proposed method reaches the state-of-the-art performance on the YCB-video and the Linemod datasets.
arXiv Detail & Related papers (2020-02-20T14:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.