Renal Cell Carcinoma Detection and Subtyping with Minimal Point-Based
Annotation in Whole-Slide Images
- URL: http://arxiv.org/abs/2008.05332v1
- Date: Wed, 12 Aug 2020 14:12:07 GMT
- Title: Renal Cell Carcinoma Detection and Subtyping with Minimal Point-Based
Annotation in Whole-Slide Images
- Authors: Zeyu Gao, Pargorn Puttapirat, Jiangbo Shi, Chen Li
- Abstract summary: It is much easier and cheaper to get unlabeled data from whole-slide images.
Semi-supervised learning (SSL) is an effective way to utilize unlabeled data.
We propose a framework that employs an SSL method to accurately detect cancerous regions.
- Score: 3.488702792183152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining a large amount of labeled data in medical imaging is laborious and
time-consuming, especially for histopathology. However, it is much easier and
cheaper to get unlabeled data from whole-slide images (WSIs). Semi-supervised
learning (SSL) is an effective way to utilize unlabeled data and alleviate the
need for labeled data. For this reason, we proposed a framework that employs an
SSL method to accurately detect cancerous regions with a novel annotation
method called Minimal Point-Based annotation, and then utilize the predicted
results with an innovative hybrid loss to train a classification model for
subtyping. The annotator only needs to mark a few points and label them are
cancer or not in each WSI. Experiments on three significant subtypes of renal
cell carcinoma (RCC) proved that the performance of the classifier trained with
the Min-Point annotated dataset is comparable to a classifier trained with the
segmentation annotated dataset for cancer region detection. And the subtyping
model outperforms a model trained with only diagnostic labels by 12% in terms
of f1-score for testing WSIs.
Related papers
- Semi-Supervised Sparse Gaussian Classification: Provable Benefits of Unlabeled Data [6.812609988733991]
We study SSL for high dimensional Gaussian classification.
We analyze information theoretic lower bounds for accurate feature selection.
We present simulations that complement our theoretical analysis.
arXiv Detail & Related papers (2024-09-05T08:21:05Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - CLASS-M: Adaptive stain separation-based contrastive learning with pseudo-labeling for histopathological image classification [1.9574002186090493]
We propose a semi-supervised patch-level histological image classification model, named CLASS-M, that does not require extensively labeled datasets.
We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets.
arXiv Detail & Related papers (2023-12-12T04:38:30Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Universal Semi-Supervised Learning for Medical Image Classification [21.781201758182135]
Semi-supervised learning (SSL) has attracted much attention since it reduces the expensive costs of collecting adequate well-labeled training data.
Traditional SSL is built upon an assumption that labeled and unlabeled data should be from the same distribution.
We propose a unified framework to leverage unseen unlabeled data for open-scenario semi-supervised medical image classification.
arXiv Detail & Related papers (2023-04-08T16:12:36Z) - A semi-supervised Teacher-Student framework for surgical tool detection
and localization [2.41710192205034]
We introduce a semi-supervised learning (SSL) framework in surgical tool detection paradigm.
In the proposed work, we train a model with labeled data which initialises the Teacher-Student joint learning.
Our results on m2cai16-tool-locations dataset indicate the superiority of our approach on different supervised data settings.
arXiv Detail & Related papers (2022-08-21T17:21:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development.
We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need of external training data.
Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming the state-of-the-art alternatives, even while learning from a single slide.
arXiv Detail & Related papers (2021-09-22T15:06:06Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.