Adaptive Learning of Tensor Network Structures
- URL: http://arxiv.org/abs/2008.05437v2
- Date: Tue, 22 Jun 2021 18:46:43 GMT
- Title: Adaptive Learning of Tensor Network Structures
- Authors: Meraj Hashemizadeh and Michelle Liu and Jacob Miller and Guillaume
Rabusseau
- Abstract summary: We leverage the TN formalism to develop a generic and efficient adaptive algorithm to learn the structure and the parameters of a TN from data.
Our algorithm can adaptively identify TN structures with small number of parameters that effectively optimize any differentiable objective function.
- Score: 6.407946291544721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Networks (TN) offer a powerful framework to efficiently represent very
high-dimensional objects. TN have recently shown their potential for machine
learning applications and offer a unifying view of common tensor decomposition
models such as Tucker, tensor train (TT) and tensor ring (TR). However,
identifying the best tensor network structure from data for a given task is
challenging. In this work, we leverage the TN formalism to develop a generic
and efficient adaptive algorithm to jointly learn the structure and the
parameters of a TN from data. Our method is based on a simple greedy approach
starting from a rank one tensor and successively identifying the most promising
tensor network edges for small rank increments. Our algorithm can adaptively
identify TN structures with small number of parameters that effectively
optimize any differentiable objective function. Experiments on tensor
decomposition, tensor completion and model compression tasks demonstrate the
effectiveness of the proposed algorithm. In particular, our method outperforms
the state-of-the-art evolutionary topology search [Li and Sun, 2020] for tensor
decomposition of images (while being orders of magnitude faster) and finds
efficient tensor network structures to compress neural networks outperforming
popular TT based approaches [Novikov et al., 2015].
Related papers
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
We propose an integration of tensor networks (TN) into deep neural networks (NNs)
This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space.
We validate the accuracy and efficiency of our method by designing TNN models and providing benchmark results for linear and non-linear regressions, data classification and image recognition on MNIST handwritten digits.
arXiv Detail & Related papers (2022-11-26T20:24:36Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Latent Matrices for Tensor Network Decomposition and to Tensor
Completion [8.301418317685906]
We propose a novel higher-order tensor decomposition model that decomposes the tensor into smaller ones and speeds up the computation of the algorithm.
Three optimization algorithms, LMTN-PAM, LMTN-SVD and LMTN-AR, have been developed and applied to the tensor-completion task.
Experimental results show that our LMTN-SVD algorithm is 3-6 times faster than the FCTN-PAM algorithm and only a 1.8 points accuracy drop.
arXiv Detail & Related papers (2022-10-07T08:19:50Z) - STN: Scalable Tensorizing Networks via Structure-Aware Training and
Adaptive Compression [10.067082377396586]
We propose Scalableizing Networks (STN), which adaptively adjust the model size and decomposition structure without retraining.
STN is compatible with arbitrary network architectures and achieves higher compression performance and flexibility over other tensorizing versions.
arXiv Detail & Related papers (2022-05-30T15:50:48Z) - Multi-Tensor Network Representation for High-Order Tensor Completion [25.759851542474447]
This work studies the problem of high-dimensional data (referred to tensors) completion from partially observed samplings.
We consider that a tensor is a superposition of multiple low-rank components.
In this paper, we propose a fundamental tensor decomposition framework: Multi-Tensor Network decomposition (MTNR)
arXiv Detail & Related papers (2021-09-09T03:50:19Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
A promising strategy is based on tensor networks, which have been very successful in physical and chemical applications.
We show that the weights of a multidimensional regression model can be learned by means of tensor networks with the aim of performing a powerful compact representation.
An algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational power.
arXiv Detail & Related papers (2021-01-22T16:14:38Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.