Evolutionary Algorithm Enhanced Neural Architecture Search for
Text-Independent Speaker Verification
- URL: http://arxiv.org/abs/2008.05695v1
- Date: Thu, 13 Aug 2020 05:34:52 GMT
- Title: Evolutionary Algorithm Enhanced Neural Architecture Search for
Text-Independent Speaker Verification
- Authors: Xiaoyang Qu, Jianzong Wang, Jing Xiao
- Abstract summary: We borrow the idea of neural architecture search(NAS) for the textindependent speaker verification task.
This paper proposes an evolutionary algorithm enhanced neural architecture search method called Auto-designed.
The experimental results demonstrate our NAS-based model outperforms state-of-the-art speaker verification models.
- Score: 29.939687921618678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art speaker verification models are based on deep learning
techniques, which heavily depend on the handdesigned neural architectures from
experts or engineers. We borrow the idea of neural architecture search(NAS) for
the textindependent speaker verification task. As NAS can learn deep network
structures automatically, we introduce the NAS conception into the well-known
x-vector network. Furthermore, this paper proposes an evolutionary algorithm
enhanced neural architecture search method called Auto-Vector to automatically
discover promising networks for the speaker verification task. The experimental
results demonstrate our NAS-based model outperforms state-of-the-art speaker
verification models.
Related papers
- Evolution and Efficiency in Neural Architecture Search: Bridging the Gap Between Expert Design and Automated Optimization [1.7385545432331702]
The paper provides a comprehensive overview of Neural Architecture Search.
It emphasizes its evolution from manual design to automated, computationally-driven approaches.
It highlights its application across various domains, including medical imaging and natural language processing.
arXiv Detail & Related papers (2024-02-11T18:27:29Z) - HiveNAS: Neural Architecture Search using Artificial Bee Colony
Optimization [0.0]
In this study, we evaluate the viability of Artificial Bee Colony optimization for Neural Architecture Search.
Our proposed framework, HiveNAS, outperforms existing state-of-the-art Swarm Intelligence-based NAS frameworks in a fraction of the time.
arXiv Detail & Related papers (2022-11-18T14:11:47Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language
Processing [12.02718579660613]
We step outside the computer vision domain by leveraging the language modeling task, which is the core of natural language processing (NLP)
We have provided search space of recurrent neural networks on the text datasets and trained 14k architectures within it.
We have conducted both intrinsic and extrinsic evaluation of the trained models using datasets for semantic relatedness and language understanding evaluation.
arXiv Detail & Related papers (2020-06-12T12:19:06Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - AutoSpeech: Neural Architecture Search for Speaker Recognition [108.69505815793028]
We propose the first neural architecture search approach approach for the speaker recognition tasks, named as AutoSpeech.
Our algorithm first identifies the optimal operation combination in a neural cell and then derives a CNN model by stacking the neural cell for multiple times.
Results demonstrate that the derived CNN architectures significantly outperform current speaker recognition systems based on VGG-M, ResNet-18, and ResNet-34 back-bones, while enjoying lower model complexity.
arXiv Detail & Related papers (2020-05-07T02:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.