Continuous Speech Separation with Conformer
- URL: http://arxiv.org/abs/2008.05773v2
- Date: Thu, 22 Oct 2020 12:38:51 GMT
- Title: Continuous Speech Separation with Conformer
- Authors: Sanyuan Chen, Yu Wu, Zhuo Chen, Jian Wu, Jinyu Li, Takuya Yoshioka,
Chengyi Wang, Shujie Liu, Ming Zhou
- Abstract summary: We use transformer and conformer in lieu of recurrent neural networks in the separation system.
We believe capturing global information with the self-attention based method is crucial for the speech separation.
- Score: 60.938212082732775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous speech separation plays a vital role in complicated speech related
tasks such as conversation transcription. The separation model extracts a
single speaker signal from a mixed speech. In this paper, we use transformer
and conformer in lieu of recurrent neural networks in the separation system, as
we believe capturing global information with the self-attention based method is
crucial for the speech separation. Evaluating on the LibriCSS dataset, the
conformer separation model achieves state of the art results, with a relative
23.5% word error rate (WER) reduction from bi-directional LSTM (BLSTM) in the
utterance-wise evaluation and a 15.4% WER reduction in the continuous
evaluation.
Related papers
- Transcription-Free Fine-Tuning of Speech Separation Models for Noisy and Reverberant Multi-Speaker Automatic Speech Recognition [18.50957174600796]
Solution to automatic speech recognition (ASR) of overlapping speakers is to separate speech and then perform ASR on the separated signals.
Currently, the separator produces artefacts which often degrade ASR performance.
This paper proposes a transcription-free method for joint training using only audio signals.
arXiv Detail & Related papers (2024-06-13T08:20:58Z) - Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation
and Recognition [52.11964238935099]
An audio-visual multi-channel speech separation, dereverberation and recognition approach is proposed in this paper.
Video input is consistently demonstrated in mask-based MVDR speech separation, DNN-WPE or spectral mapping (SpecM) based speech dereverberation front-end.
Experiments were conducted on the mixture overlapped and reverberant speech data constructed using simulation or replay of the Oxford LRS2 dataset.
arXiv Detail & Related papers (2023-07-06T10:50:46Z) - Multi-Dimensional and Multi-Scale Modeling for Speech Separation
Optimized by Discriminative Learning [9.84949849886926]
Intra-SE-Conformer and Inter-Transformer (ISCIT) for speech separation.
New network SE-Conformer can model audio sequences in multiple dimensions and scales.
arXiv Detail & Related papers (2023-03-07T08:53:20Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
This paper proposes an audio-visual multi-channel speech separation, dereverberation and recognition approach.
The advantage of the additional visual modality over using audio only is demonstrated on two neural dereverberation approaches.
Experiments conducted on the LRS2 dataset suggest that the proposed audio-visual multi-channel speech separation, dereverberation and recognition system outperforms the baseline.
arXiv Detail & Related papers (2022-04-05T04:16:03Z) - A Comparative Study on Speaker-attributed Automatic Speech Recognition
in Multi-party Meetings [53.120885867427305]
Three approaches are evaluated for speaker-attributed automatic speech recognition (SA-ASR) in a meeting scenario.
The WD-SOT approach achieves 10.7% relative reduction on averaged speaker-dependent character error rate (SD-CER)
The TS-ASR approach also outperforms the FD-SOT approach and brings 16.5% relative average SD-CER reduction.
arXiv Detail & Related papers (2022-03-31T06:39:14Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
This study demonstrates, for the first time, that the synthesis-based approach can also perform well on this problem.
Specifically, we propose a novel speech separation/enhancement model based on the recognition of discrete symbols.
By utilizing the synthesis model with the input of discrete symbols, after the prediction of discrete symbol sequence, each target speech could be re-synthesized.
arXiv Detail & Related papers (2021-12-17T08:35:40Z) - On End-to-end Multi-channel Time Domain Speech Separation in Reverberant
Environments [33.79711018198589]
This paper introduces a new method for multi-channel time domain speech separation in reverberant environments.
A fully-convolutional neural network structure has been used to directly separate speech from multiple microphone recordings.
To reduce the influence of reverberation on spatial feature extraction, a dereverberation pre-processing method has been applied.
arXiv Detail & Related papers (2020-11-11T18:25:07Z) - Audio-visual Multi-channel Recognition of Overlapped Speech [79.21950701506732]
This paper presents an audio-visual multi-channel overlapped speech recognition system featuring tightly integrated separation front-end and recognition back-end.
Experiments suggest that the proposed multi-channel AVSR system outperforms the baseline audio-only ASR system by up to 6.81% (26.83% relative) and 22.22% (56.87% relative) absolute word error rate (WER) reduction on overlapped speech constructed using either simulation or replaying of the lipreading sentence 2 dataset respectively.
arXiv Detail & Related papers (2020-05-18T10:31:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.